Obdelava digitalnih slik
Metode obdelave digitalnih slik

- **Quantization**
 - Uniform Quantization
 - Random dither
 - Ordered dither
 - Floyd-Steinberg dither

- **Pixel operations**
 - Add random noise
 - Add luminance
 - Add contrast
 - Add saturation

- **Filtering**
 - Blur
 - Detect edges

- **Warping**
 - Scale
 - Rotate
 - Warp

- **Combining**
 - Composite
 - Morph

types of techniques

- simple pixel modification
- interpolation/extrapolation
- compositing
- convolution
- dithering
- warping
- morphing
- misc. effects
types of techniques

- simple pixel modification
- interpolation/extrapolation
- compositing
- convolution
- dithering
- warping
- morphing
- misc. effects
Preprosto spreminjanje pikslov

$f: [0,1] \rightarrow [0,1]$

input image

output image

apply function f to each channel of each pixel of input image
Homogeneous Point Processing--
An image processing that maps an input image to an output image without performing geometric changes.

Theory--
If an image is represented by an array of pixels, each with a color value, one can manipulate the color values to change the image.

Examples--
• washing out an image,
• brightening an image,
• adjusting an image’s contrast
Negativi slik

Princip: \(f(v) = 1 - v \)

A negative image may be created by taking a color, and finding its opposite. If 8 bits represent a given red, blue, or green value, the inverse would be 255 minus that color value.

Formula: \(f(v_{ij}) = 255 - v_{ij} \)
The brightness of each pixel may be adjusted by a similar use of the byte range:

\[f(v) = \alpha v \text{ for } \alpha \geq 0 \quad \text{ clamp to } [0,1] \]

\[f(v_{ij}) = 255 \left(v_{ij} / 255 \right)^{\text{pow}} \]

With \(\text{pow} > 1 \), the image darkens.
Likewise, we can build a linear transform to alter contrast

\[v_{ij} = cv_{ij} + b, \]

where

\[c = \frac{\text{delta } D}{\text{delta } V}, \]
\[b = \frac{(D_{\text{min}} \times V_{\text{max}} - D_{\text{max}} \times V_{\text{min}})}{\text{delta} V} \]

given

\[V = \text{value in image} \]
\[D = \text{value that can be displayed} \]

(This is also called linear gray level scaling)
How does PixelGrabber work? Check your API
public int inversePixel(int x, int y, int pixel) {
 int alpha = (pixel >> 24) & 0xff;
 int red = (pixel >> 16) & 0xff;
 int green = (pixel >> 8) & 0xff;
 int blue = (pixel) & 0xff;
 red = Math.abs(255-red);
 green = Math.abs(255-green);
 blue = Math.abs(255-blue);
 return (alpha << 24) | (red << 16) | (green << 8) | blue;
}

public int brightenPixel(int x, int y, int pixel, double p){
 int alpha = (pixel >> 24) & 0xff;
 int red = (pixel >> 16) & 0xff;
 int green = (pixel >> 8) & 0xff;
 int blue = (pixel) & 0xff;
 red = (int)(255 * Math.pow(red/255.0, p));
 green = (int)(255 * Math.pow(green/255.0, p));
 blue = (int)(255 * Math.pow(blue/255.0, p));
 return (alpha << 24) | (red << 16) | (green << 8) | blue;
}
if $v > t$ then $f(v) = 1$
else $f(v) = 0$
types of techniques

- simple pixel modification
- interpolation/extrapolation
- compositing
- convolution
- dithering
- warping
- morphing
- non-photo-realistic effects
Interpolacija - ekstrapolacija

input image 1

input image 2

output image

v

w

$\alpha v + (1-\alpha)w$
type of techniques

- simple pixel modification
- interpolation/extrapolation
- compositing
- convolution
- dithering
- warping
- morphing
- misc. effects
Kompozicija

generalization of interpolation/extrapolation in which α varies depending on pixel location

\[\alpha_{ij} v + (1-\alpha_{ij})w \]
Kompozicija

typically $\alpha \in [0,1]$ so the array of α values can represented by a single channel image called a *mask*.
type of techniques

- simple pixel modification
- interpolation/extrapolation
- compositing
- convolution
- dithering
- warping
- morphing
- misc. effects
• Filters are characterised by:
 – *frequency response* (e.g. high-pass, low-pass, band-pass, notch…)
 – *support* = region over which filter is non-zero. If non-zero over a finite domain, filter is said to have finite support.
 – *order*: most filters are *linear* (i.e. do not depend on the signal being filtered)
 – *variance*: a filter which does not alter with position is known as *shift-invariant* otherwise *spatially variant*.

• The frequency representation of a filter determines its frequency response.
• The spatial representation is used to characterise its support.
• The ideal filter is a box function in the frequency domain.
• In the spatial domain, this becomes the sinc filter kernel which has non-finite support.

$$F(u) = \begin{cases}
1 & |u| \leq u_c \\
0 & |u| > u_c
\end{cases}$$

$$f(x) = \text{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$
• Kernels with larger support can have better frequency response properties (more effective filters).
 ⇒ more memory required per filter = \((2s+1)^2\) for discrete 2D filter
 ⇒ convolution is more expensive = \(n(2s+1)^2\)

• Filter gain is usually assumed to be 1, i.e. unity gain ⇒ filter is normalised:
 \[g = \sum_{t=-s}^{s} g[t] \]

• If gain > 1, the filtered signal will be scaled by the gain
 – images will get brighter or darker

• We can compensate by dividing by the gain (= scale):

\[
h(x) = f \ast g = \frac{1}{gain} \sum_{t=-s}^{s} g[t] f[x - t] = \frac{1}{gain} \sum_{t=-s}^{s} g[t] f[x - t]
\]
Multiplying the frequency representation of an image by a filter may be expressed in the spatial domain as *convolution*.

If the image is $f(x)$ and the filter (in the spatial domain) is $g(x)$ then convolution is defined by:

$$f(x) * g(x) = \mathcal{F}(f(x)) \mathcal{F}(g(x)) = \int_{-\infty}^{\infty} g(t) f(x-t) dt$$

Normally we are concerned with *discrete convolution*:

$$f * g = \sum_{t=-s}^{s} g[t] f[x-t]$$

In this case, the filter $g(x)$ is assumed to have finite discrete support $[-s,s]$.
Diskretna konvolucija

\[f * g = \frac{1}{gain} \sum_{t=-s}^{s} g[t] f[x - t] \]

\(f(x) \)

\(g(x) \) support = 2

scale = 1/9

\[2 + 4 + 9 + 18 + 5 \]

\[38 \rightarrow \frac{38}{9} = 4.2 \]
Diskretna 2D konvolucija

\[f \ast g = \frac{1}{\text{gain}} \sum_{v=-s}^{s} \sum_{u=-s}^{s} g[u, v] f[x-u, y-v] \]
Konvolucija

\[\sum w_{ij} v_{ij} \]
Splošna oblika jedra

<table>
<thead>
<tr>
<th>W_{11}</th>
<th>...</th>
<th>W_{1n}</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>$\mathbf{1}$</td>
<td>...</td>
</tr>
<tr>
<td>W_{n1}</td>
<td>...</td>
<td>W_{nn}</td>
</tr>
</tbody>
</table>

n... liho število
Kaj narediti na robovih?
Nizkopasovni filtri

Box (order 3) = \[\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \]

Box (order 5) = \[\frac{1}{25} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \]
Nizkopasovni filtri

\[
\text{Gaussian} = \frac{1}{256} \begin{bmatrix}
1 & 4 & 6 & 4 & 1 \\
4 & 16 & 24 & 16 & 4 \\
6 & 24 & 36 & 24 & 6 \\
4 & 16 & 24 & 16 & 4 \\
1 & 4 & 6 & 4 & 1 \\
\end{bmatrix}
\]

\[
\text{Triangle (Bartlett)} = \frac{1}{81} \begin{bmatrix}
1 & 2 & 3 & 2 & 1 \\
2 & 4 & 6 & 4 & 2 \\
3 & 6 & 9 & 6 & 3 \\
2 & 4 & 6 & 4 & 2 \\
1 & 2 & 3 & 4 & 1 \\
\end{bmatrix}
\]
Visokopasovni filtri

\[
\text{Highpass} = \frac{1}{16} \begin{bmatrix}
1 & 2 & 1 \\
2 & -12 & 2 \\
1 & 2 & 1
\end{bmatrix}
\]

\[
= \frac{1}{16} \begin{bmatrix}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{bmatrix} - \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

\[
\text{Laplacian} = \frac{1}{16} \begin{bmatrix}
1 & 1 & 1 \\
1 & -8 & 1 \\
1 & 1 & 1
\end{bmatrix}
\]
Drugi filtri

Emboss = \frac{1}{2} + \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix}

unsharp = f + (f - f * g_{LP})
Odkrivanje robov

Jedro za odkrivanje robov

\[
\begin{array}{ccc}
-1/8 & -1/8 & -1/8 \\
-1/8 & 1 & -1/8 \\
-1/8 & -1/8 & -1/8 \\
\end{array}
\]
Zameglitev (blur)
3x3 box blur

<table>
<thead>
<tr>
<th>1/9</th>
<th>1/9</th>
<th>1/9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
</tr>
<tr>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
</tr>
<tr>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
</tr>
</tbody>
</table>
nXn box blur

\[
\begin{array}{ccc}
W & \ldots & W \\
\vdots & \blacksquare & \vdots \\
W & \ldots & W \\
\end{array}
\]

\[w = \frac{1}{n^2}\]

why is it important that the sum of the weights is 1?
3x3 triangle blur

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/16</td>
<td>1/8</td>
<td>1/16</td>
</tr>
<tr>
<td>1/8</td>
<td>1/4</td>
<td>1/8</td>
</tr>
<tr>
<td>1/16</td>
<td>1/8</td>
<td>1/16</td>
</tr>
</tbody>
</table>
triangle function
discrete triangle
normalized, discrete triangle

1. \(T = \frac{n+1}{2} \) gives \(n \) non-zero samples

2. \(\sum_{j=-T}^{T} f(j) = 1 \) provided \(B = \frac{2}{(n+1)} \)
triangle blur filter

triangle samples: w_1, w_2, \ldots, w_n
example: \(n=3 \)

\[
T = \frac{n+1}{2} = 2 \\
B = \frac{2}{(n+1)} = \frac{1}{2}
\]
3x3 triangle blur filter

<table>
<thead>
<tr>
<th></th>
<th>1/4</th>
<th>1/8</th>
<th>1/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>1/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td></td>
<td>1/4</td>
<td>1/8</td>
</tr>
<tr>
<td>1/4</td>
<td>1/16</td>
<td>1/8</td>
<td>1/16</td>
</tr>
<tr>
<td></td>
<td>1/4</td>
<td>1/2</td>
<td>1/4</td>
</tr>
</tbody>
</table>
gaussian function

\[f(x) = Be^{-x^2/\sigma^2} \]

\(\sigma \) is an input parameter that controls the width of peak.
normalized, discrete version

\[T = \frac{n+1}{2} \text{ gives } n \text{ samples} \]

\[B = \frac{1}{\sum f(j)} \]
example: n=3, \(\sigma=1 \)
3x3 gaussian blur, $\sigma = 1$

<table>
<thead>
<tr>
<th></th>
<th>.045</th>
<th>.122</th>
<th>.045</th>
</tr>
</thead>
<tbody>
<tr>
<td>.212</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.576</td>
<td>.122</td>
<td>.332</td>
<td>.122</td>
</tr>
<tr>
<td>.212</td>
<td>.045</td>
<td>.122</td>
<td>.045</td>
</tr>
<tr>
<td>.212</td>
<td>.212</td>
<td>.576</td>
<td>.212</td>
</tr>
</tbody>
</table>
Box, triangle, Gaussian blurr
Obdelava slik in java2D
type of techniques

- simple pixel modification
- interpolation/extrapolation
- compositing
- convolution
- dithering
- warping
- morphing
- misc. effects
Razprševanje in poltoni (dithering, halftoning)

Trade spatial for intensity resolution
• Thresholding.
• Random dither; Robert’s algorithm
• Ordered dither
• Error diffusion

Your eye will average over an area
- Spatial Integration
Prag (Thresholding)

Original image.

\[v(x, y) = \text{trunc}(\hat{v}(x, y) + n) \]

\(n = 0.5 \quad \text{Simple threshold.} \quad n = 0.7 \)

Errors are low spatial frequencies.
Robertov algoritem

- First add noise
- Then quantize

\[\hat{v}(x, y) = \text{trunc}(K \times v(x, y) + \text{noise}(x, y)) \]

\[0 \leq \text{noise} < 1 \]

Moves errors to higher spatial frequencies.
-> eye averages over an area.
Spektri šumov

Pink Noise

Blue Noise

White Noise
Robertov algoritem

Moves low frequency (average error) to high frequency
Pink(low), **Blue (high)**, White(all) frequency noise
• Difficult to compute quickly.
• Not reproducible.
• Pre-compute pseudo-random function and store in table.
• Small tiled patterns sufficient
• Trade off spatial resolution for intensity resolution.

• Use dither patterns.

• Can be represented as a matrix.
Bayerjevi vzorci urejenega razprševanja

\[D_2 = \begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix} \]

\[D_n = \begin{bmatrix} 4D_{n/2} + 0 & 4D_{n/2} + 2 \\ 4D_{n/2} + 3 & 4D_{n/2} + 1 \end{bmatrix} \]

\[D_4 = \begin{bmatrix} 0 & 8 & 2 & 10 \\ 12 & 4 & 14 & 6 \\ 3 & 11 & 1 & 9 \\ 15 & 7 & 13 & 5 \end{bmatrix} \]
Druge možnosti

\[M_4 = \begin{bmatrix}
0 & 6 & 13 & 11 \\
9 & 15 & 4 & 2 \\
14 & 8 & 3 & 5 \\
7 & 1 & 10 & 12
\end{bmatrix} \]

\[P_4 = \begin{bmatrix}
15 & 8 & 5 & 2 \\
4 & 3 & 14 & 9 \\
10 & 13 & 0 & 7 \\
1 & 6 & 11 & 12
\end{bmatrix} \]
Idea: Quantize, then distribute error to neighbours

for(y=0; y<ny; y++)
 for(x=0; x<nx; x++){
 vq[x][y] = quantize(v[x][y]);
 e = v[x][y] - vq[x][y];
 i[x+1][y] += 3/8*e;
 i[x][y+1] += 3/8*e;
 i[x+1][y+1] += 1/4*e;
 }
Primerjava

Blue Noise Bayer Dither Floyd-Steinberg
• Real world is continuous
• The computer world is discrete
• Mapping a continuous function to a discrete one is called sampling
• Mapping a continuous variable to a discrete one is called quantization
• To represent or render an image using a computer, we must both sample and quantize
• All physical displays recreate a continuous image from a discrete sampled image by using a finite sized source of light for each pixel.
- It is NOT a box, disc or teeny wee light
- It has no dimension
- It occupies no area
- It can have a coordinate
- \textit{More} than a point, it is a \textit{SAMPLE}
• Video camera: CCD array.

\[
V = k \int \int I \, dx \, dy
\]

Value sensed is an area integral over a pixel.
• The eye: photoreceptors

Film is similar: irregular array of receptors.

Ali je pri računalniški grafiki drugače?

Model of Scene.
- points
- lines
- 3D objects
- lighting etc

Frame Buffer

Point Sampling.

Query values of pixels
Zvezen svetlostní signal
Sampling at pixel centers

Sampled signal
Rekonstruirana svetlost

Rendered image

Luminosity signal
Rezultat rekonstrukcije

Original

Rendered

Jagged profiles
The raster *aliasing* effect – removal is called *antialiasing*.
Je lahko resen problem...
...zelo resen problem!

Disintegrating textures
• Sampling a 1-D function:
• Sampling a 1-D function:
Sampling a 1-D function:
- What do you notice?
Sampling a 1-D function: what do you notice?
- Jagged, not smooth
Sampling a 1-D function: what do you notice?

- Jagged, not smooth
- Loses information!
Prefiltering methods examine areas of color within a pixel.
<table>
<thead>
<tr>
<th>1/16</th>
<th>1/8</th>
<th>1/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>1/4</td>
<td>1/8</td>
</tr>
<tr>
<td>1/16</td>
<td>1/8</td>
<td>1/16</td>
</tr>
</tbody>
</table>

Combines nine samples

Filters combine samples to find a pixel’s color.
Hello World
Hello World
A demonstration
Zameglitev (blurring) ni dobra

Removed the *jaggies*, but also all the detail! → Reduction in resolution
nadvzorčenje (supersampling)?

- solution: take multiple samples for each pixel and average them together → supersampling.
- Can weight them towards the centre → weighted average sampling
- Stochastic sampling
Taking 9 samples per pixel
This filter computes a weighted average.

Samples Pixels
No antialiasing
3x3 supersampling
3x3 unweighted filter
3x3 supersampling
5x5 weighted filter
3x3 jittered supersampling
5x5 weighted filter
• Computationally expensive.
• Difficult to do analytically in a 3D environment
 – Single sample is a ray in 3D - easy computation of intersections.
• Area sample becomes a cone!
 – Reflections difficult.
• Is it an optimum solution?
Antialiasing with Area Sampling

- A scan converted primitive occupies finite area on the screen.
- Intensity of the boundary pixels is adjusted depending on the percent of the pixel area covered by the primitive. This is called weighted area sampling.
- Intensities can be weighted depending on the distance of the area from the center of the pixel.
Antialiasing with Area Sampling

- Methods to estimate percent of pixel covered by the pixel
 - subdivide pixel into sub-pixels and determine how many sub-pixels are inside the boundary
 - Incremental line algorithm can be extended, with area calculated as

\[
\text{Area} = m \cdot x - y + c + 0.5
\]

Efficient only when one edge of the area passes through the pixel.
• We need some mathematical tools to
 – analyse the situation.
 – find an optimum solution.

• Tools we will use :
 – Fourier transform.
 – Convolution theory.
 – Sampling theory.
• Spectral representation treats the function as a weighted sum of sines and cosines.
• Every function has two representations:
 – Spatial (time) domain - normal representation
 – Frequency domain - spectral representation
• The mathematical conversion converts between the spatial and frequency domains.
The converts between the spatial and frequency domain.

\[
F(\omega) = \int_{-\infty}^{\infty} f(x)e^{-i\omega x} \, dx
\]

\[
f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)e^{i\omega x} \, d\omega
\]

\[e^{it} = \cos t + i \sin t\]

- Note the Euler formula:
- Real and imaginary components.
- Forward and reverse transforms very similar.
 - Reversal in sign of imaginary component, scale constant.
Some important properties of Fourier transforms.

- Finite function \Leftrightarrow Infinite function.
 - eg. single sine wave \Leftrightarrow single point or ‘delta’ function.

- Square or boxcar function - corresponds to 1 pixel.

Function called:
Square(x)
Filtering in the frequency domain

Image \rightarrow Fourier Transform \rightarrow Frequency domain \times Filter \rightarrow Fourier Transform \rightarrow Image

Lowpass filter

Highpass filter
• Low pass

• High pass
Filtriranje v časovnem prostoru

• Blurring or averaging pixels together.

\[h(x) = f \otimes g = \int f(x)g(x - y)dy \]

Calculate integral of one function, \(f(x) \) by a sliding second function \(g(x-y) \).

Known as Convolution.
Kako odstraniti aliasing?

- Perfect solution - prefilter with perfect bandpass filter.

Perfect bandpass

No aliasing.

Aliased example
Do aliasing pripelje podvzorčenje

Spurious components: Cause of aliasing.

Samples are too close together in f.
Kako predstavimmo vzorčenje?

- Multiplication of the sample with a regular train of delta functions.
Need Fourier transform of regular train of delta functions.

- A regular train of delta functions - spacing is inversely proportional
So convolve with this function.

Multiple solutions at regularly increasing values of f
Rekonstrukcija v frekvenčnem prostoru

Bandpass filter due to regular array of pixels.
Kako odstranimo aliasing?

- Perfect solution - prefilter with perfect bandpass filter.
 - Difficult/Impossible to do in frequency domain
- Convolve with sinc function in space domain
 - Optimal filter - better than area sampling.
 - Sinc function is infinite !!
 - Computationally expensive.