Algoritmi rasterske grafike

Risanje primitivov

- Vector displays "paint" lines across the smooth phosphor coating of the screen and generate smooth curves or straight lines.
- Raster-scan based displays work on a grid principle and are inherently unable to represent smooth curves.
- Mass-market computer displays are based on the raster-scan method.

- Little Square Model pretends to represent a pixel (picture element) as a geometric square.
 - e.g. pixel (i,j) is assumed to be:

where it is bounded by the square:

$$\{(x, y) | i - 0.5 \le x \le i + 0.5, j - 0.5 \le y \le j + 0.5\}$$

• Does the pixel center lie on the integers?

or does it lie on the half-integer?

• "Half-Integerists" would place (i,j) correspond to the area of a plane.

$$\{(x, y) | i - 0.5 \le x \le i + 0.5, j - 0.5 \le y \le j + 0.5\}$$

 And the resolution-independent coordinate system for an image is:

 $\{(x,y) \mid sx \le x \le Width, sy \le y \le Height\}$

- A pixel is a point sample.
- It only exists at a point.
- A colour pixel will actually contain 3 samples: red, green and blue
- A pixel is not a little square.
- An image is a rectilinear array of point samples (discrete not continuous)

- Why is the "little square model" popular:
 - Rendering (conversion of abstract geometry into viewable pixels)
 - The mathematics is easier if we assume a continuum.

 Why shouldn't the "little square model" be identified with a single pixel?

-Magnification

 a zoom looks like little squares, but the actual pixel hasn't been enlarged.

- Why shouldn't the "little square model" be identified with a single pixel?
 - -Scanner Digitising a Picture
 - -a light source illuminates the paper
 - -light reflected is collected and measured by a colour sensitive device
 - the collected light is passed through a filtering shape (never a square)
 - -pixels are determined by averaging overlapping shapes.

Uvod v 2D upodabljanje

2D primitives

- Line segments
- Ellipses and circles
- Polygons
- Curves
- Rasterization (Scan-Conversion)
 - Turn 2D primitives into sets of pixels
 - A Pixel Is Not A Little Square (Digital Signal Processing)
 - Antialiasing
- Clipping
 - Compute the intersection of a primitive and a shape
 - Primitive: line segment, polygon
 - Shape: rectangle, convex polygon

Nekaj matematike

- Coordinate system: y axis upward or downward?
- Pixels are at the centres of integer coordinates
- Line segments
 - Equation of a (2D) line: ax + by + c = 0
 - Direction: (-b a)
 - Normal vector: (a b)
 - Parametric equation of a segment [P1-P2]
 x(t) = x1 + t*(x2-x1) = (1-t)*x1 + t*x2
 y(t) = y1 + t*(y2-y1) = (1-t)*y1 + t*y2
 t in [0..1]

Nekaj matematike

Polygons

- Closed sequence of line segments (P1 P2 ..
 Pn)
- Different types
- Convex
- Concave = not convex
- Self-intersecting (8-shape)
- With holes

Rasterizacija

- Converting mathematical definitions to pixels
 - We can only approximate the mathematical definition
 - A Pixel is Not a Little Square
 - Avoid holes
 - Draw each pixel exactly once
 - Naive (expensive) approach
 - Evaluate formulas on the pixel grid
 - Clever approach
 - Use integer calculations
 - Avoid divides and multiplies
 - Use incremental computations
 - Use spatial coherence

Ravne črte in krogi

- In general, straight lines are neither vertical nor horizontal.
- Pixels are roughly square and support only horizontal and vertical lines well.
- The general case of line drawing must be based upon some sort of compromise.

Ravne črte

extend between two points:

(x1,y1), (x2,y2) eg line below = (3,0) and (13, 10)

Problemi z ravnimi črtami

the stair-step effect

Problemi z ravnimi črtami

which pixels to colour?

Približno risanje črt

- Assume square pixels.
- Assume that the line starts at (x1, y1) and finishes at (x2, y2).
- Say that dx=x2-x1, dy=y2-y1
- If we start with the simplest non-trivial case where dx=dy, we can immediately see that a 45 degree diagonal line has one x step per y step.

Približno risanje črt

- The basic requirement for an approximation is to generate the minimum error at each step.
- The largest acceptable error must be half a pixel.
- To simplify the problem, we consider only one eighth of the possible angles, ie we choose to consider only one octant. We can generalise later using a mirroring technique.

Približno risanje črt

 For each x step the difference between the actual y position and the required y position is calculated; if it is more than half a pixel, move by one y step.

Enačba premice

- Equation of a line is y m.x + c = 0
- For a line segment joining points P(x1,y2) and

$$P(x2,y2) \qquad slope \qquad m = \frac{y2 - y1}{x2 - x1} = \frac{\Delta y}{\Delta x}$$

Slope *m* means that for every unit increment in *X* the increment in *Y* is *m* units

Naivni algoritem rasterizacije črt

- Line segment defined by P0 P1
- Equation of line is

```
Y = mX + B

m = (y1-y0) / (x1-x0)

B = y0 - m*x0
```

- Algorithm:
 - start with the smallest of (x0,x1)
 - compute corresponding value of y
 - SetPixel(x, round(y))
 - increment x and loop until reaching max(x0,x1)
- Cost: 1 float mult + 1 float add + 1 round per loop

Inkrementalni algoritem rasterizacije črt

- Compute y using it's previous value rather than from scratch
- y[i+1] = y[i] + m*(x[i+1]-x[i]), but since we increment x by 1:
 y[i+1] = y[i] + m
- Cost: 1 float add + 1 round per loop

Minimiziranje računanj s plavajočo vejico

With straight lines one way of minimising the amount of floating point calculation is:

if
$$(x_1 = = x_2) =>$$
 vertical line
elseif $(y_1 = = y_2) =>$ horizontal line
else

$$y_{k+1} = y_k + m$$

Allows the minimum of floating point calculation to be carried out.

Digitalni diferencialni analizator (DDA)

- Digital Differential Analyzer algorithm more popularly known as DDA
- This is an *Incremental algorithm* i.e. at each step it makes incremental calculations based on the calculations done during the preceding step
- The algorithm uses floating point operations, which are very cleverly avoided in an algorithm first proposed by J. Bresenham of IBM,. The algorithm is well known as *Bresenham's Line Drawing Algorithm*.
- A slight variation Midpoint Line Drawing Algorithm –

Bresenham's Line Algorithm (BLA)

- •Scan-converts lines using only incremental integer calculations.
- •BLA again assumes the line is sampled at unit x intervals.
- •BLA uses the sign (+ve/-ve) of an integer (p) whose value is proportional to:
 - •the difference between the two candidate y values separation from the calculated line path
- •The differential line algorithm uses floating-point values (the error value is a fraction) and floating point calculations are slow compared with integer calculations.
- •BLA can be used for curves as well as straight lines.

Digitalni diferencialni analizator (DDA)

The DDA is a scan-conversion algorithm, which recognises that the x interval is always 1 (corresponding to moving to the next pixel column in the frame buffer) thus

$$y_{k+1} = y_k + m$$

and the nearest scan-line to yk+1 will be given by:

$$y = (int) (y_{k+1} + 0.5)$$

Digitalni diferencialni analizator (DDA)

- We consider the line in the first octant. Other cases can be easily derived.
- Uses differential equation of the line

$$y_i = m \cdot x_i + c$$

where, $m = \frac{y2 - y1}{x2 - x1}$

Incrementing X-coordinate by 1

$$x_i = x_{i_prev} + 1$$

 $y_i = y_{i_prev} + m$
 $[x_i, round(y_i)]$

Illuminate the pixel

Algoritem DDA

```
differential := (y2-y1) / (x2-x1);
x := x1; y := y1; { initialise start position }
                                    { no error yet }
error := 0;
setpixel(x,y);
while x<x2 do
                                    { while not past line end }
begin
  error := error + differential;
                                {accumulate error }
                                    \{ largest error = 1/2 pixel \}
   if error \geq 1/2 then
   begin
                                    { step up one line }
         y := y+1;
         error := error-1; { error changed by 1 line }
   end:
                                    { next pixel along } { plot the pixel }
   x := x+1:
   setpixel(x,y);
end;
```

Značilnosti algoritma DDA

<u>Ugodnosti:</u>

since it uses information about raster characteristics it is faster than using y = mx + c

Možni problemi:

- •accumulation of round-off error over many successive additions can result in pixel positions which drift away from the mathematically correct line
- •round-off error increases with line length
- rounding-off still computationally expensive.

Bresenham's Algorithm: Midpoint Algorithm

- More efficient than DDA, attributed to Jack Bresenham 1965.
 - lines are single pixel wide
 - selects closest pixel to the line (approximating mid-point pixel coordinates)
 - incremental and integer calculations only
- Assume slope satisfies
- At each iteration we continued intersects the next pix midpoint y value.
 - if above then $\mathbf{A} \Rightarrow \mathbf{y}_{\text{\tiny i+1}} \ \exists$
 - otherwise $\mathbf{B} \Rightarrow \mathbf{y}_{i+1} = \mathbf{y}_i$

Midpoint Line Algorithm

- The same incremental method for scan converting lines can be derived using an integer formulation. In this the mid-point between the East (E) and NorthEast (NE) pixels is checked to see on which side of the line it lies. For this instead of y = mx + c, the line equation of the form
- F(x) = (ax + by + c = 0) is used.
- **Principle**: If F(mid-point) is above (<=0) the line then E is chosen, otherwise NE is chosen.

Midpoint Line Algorithm

 $d = a(x_p+1) + b(y_p+1/2) + c$ is the decision variable.

if d > 0 then choose NE else if d <=0 then choose E.

For an incremental algorithm, we must compute d incrementally. For that, let us see what happens to M and d for the next grid line.

We have two cases – old choice was E or NE

Midpoint Line Algorithm (nadaljevanje)

If the old choice is E, then

$$d_{new} = a(x_p+2) + b(y_p+1/2) + c$$

But
$$d_{old} = a(x_p+1) + b(y_p+1/2) + c$$

Hence $d_{new} = d_{old} + a$.

If the old choice is NE, then

$$d_{new} = a(x_p+2) + b(y_p+3/2) + c$$

Now
$$d_{new} = d_{old} + a + b$$
.

Midpoint Line Algorithm (nadaljevanje)

Consider the line segment from (x_1,y_1) to (x_2,y_2) .

$$(y_2-y_1)x - (x_2-x_1)y + c = 0$$
 is the equation.

$$a = dy = (y_2-y_1), b = -dx = -(x_2-x_1)$$

And
$$a + b = dy - dx$$

What should be d be to start with?

The first midpoint $M_1 = (x_1 + 1, y_1 + 1/2)$

$$F(M_1) = d_1 = ax_1 + by_1 + c + a + b/2$$

= $F(x_1,y_1) + a + b/2$

 x_1, y_1 is on the line, so $F(x_1, y_1) = 0$

Thus
$$d_1 = a + b/2$$

In order to avoid division by 2, we choose to make our decision using $2d_1 = 2a + b$, which does not change sign of d.

Midpoint Line Algorithm

- Input line end points (x1, y1), (x2, y2)
- Set x = x1 and y = y1 and SetLineColour(x,y)
- Calculate $dX = x^2 x^2$ and $dY = y^2 y^2$
- Calculate incrNE = 2*(dY dX) and incrE = 2*dY
- Calculate d = 2*dY dX
- While (x < x1)
 { x = x + 1;
 If d>0 then y = y + 1 and d = d + incrNE else d = d + incrE;

```
SetLineColour(x,y)
```

Midpoint Line Algorithm

```
dx = x_{end} - x_{start}
dy = y_end-y_start
d = 2*dy-dx

    initialisation

x = x_start
y = y_start
while x < x end
    if d <= 0 then
         d = d+(2*dy) choose B
         x = x+1
    else
         d = d+2*(dy-dx)
         x = x+1
                            choose A
         y = y+1
    endif
    SetPixel(x,y)
endwhile
```

Midpoint Line Algorithm

Line: (2,2)
$$\rightarrow$$
 (7,6) $\begin{array}{c} dx = 5 \\ dy = 4 \\ d = 3 \end{array}$ if d>0 then d=d-2, y=y+1 if d<0 then d=d+8

X	у	d
2	2	3
3	3	1
4	4	-1
5	4	7
6	5	5
7	6	3

(0,0)

Advantages of Incremental Midpoint Line Algorithm

- It is an incremental algorithm
- It uses only integer arithmetic
- Provides the best fit approximation to the actual line

Algoritmi za kroge

• Circle with radius r and center (x_c, y_c) is defined parametrically as: $x = x_c + r \cos \theta$

$$y = y_c + r \sin \theta$$

- \therefore could step through θ from 0 to 2π plotting coordinates:
 - difficult to effectively control step-size to eliminate gaps and minimise pixel overdrawing

Bresenham's Circle Algorithm

- Another "least error" method
- The same simplifications are used as for line drawing - solution is for one octant.
- The equation of a circle is $x^2 + y^2 = R^2$ or $x^2 + y^2 R^2 = 0$
- If x and y are not precisely on the circle,
 x² + y² R² will be non-zero (an error value).
- Error > 0 means (x,y) is outside the circle,
 Error < 0 means (x,y) is inside the circle.

- Implicit form of the circle:
- Employ a similar scheme to the midpoint line algorithm: $(x-x_c)^2 + (y-y_c)^2 r^2 = 0$
 - need only determine pixels for one octant, other octants are related via simple symmetries
 - maintain decision variable d_i which takes on values as follows:

$$d_{i} = \begin{cases} < 0 & \text{if } (x_{i}, y_{i}) \text{ is inside circle} \\ = 0 & \text{if } (x_{i}, y_{i}) \text{ is on circle} \\ > 0 & \text{if } (x_{i}, y_{i}) \text{ is outside circle} \end{cases}$$

 As with the line, we determine the value of the decision variable by substituting the mid-point of the next pixel into the implicit form of the circle:

$$d_{i} = (x_{i} + 1)^{2} + (y_{i} - \frac{1}{2})^{2} - r^{2}$$

$$d > 0$$

$$d < 0$$

$$y$$

$$y^{-1}$$

$$y^{-1}$$

- If $d_i < v$ we cnoose pixer **A** otherwise we knoose pixer **B**
- Note: we currently assume the circle is centered at the origin

- Again, as with the line algorithm, the choice of A or B can be used to determine the new value of d_{i+1}
- If A chosen then next midpoint has the following

decision variable:

$$\begin{pmatrix} x_i + 2, y_i - \frac{1}{2} \end{pmatrix} \Rightarrow d_{i+1} = \left(x_i + 2\right)^2 + \left(y_i - \frac{1}{2}\right)^2 - r^2$$

$$= d_i + 2x_i + 3$$

Otherwise if **B** is chosen then the next decision

variable is given by
$$a_{i+1} = (x_i + 2)^2 + (y_i - \frac{3}{2})^2 - r^2$$

= $d_i + 2x_i - 2y_i + 5$

• If we assume that the radius is an *integral value*, then the first pixel drawn is (0, r) and the initial value for the decision variable is given by:

$$\left(1,r-\frac{1}{2}\right) \Rightarrow d_0 = 1 + \left(r^2 - r + \frac{1}{4}\right) - r^2$$

$$= \frac{5}{4} - r$$
 Although the initial value is *fractional*, we note that all

 Although the initial value is fractional, we note that all other values are integers.

$$\Rightarrow$$
 we can round down: $_{d_0} = 1 - r$

```
d = 1-r
x = 0
y = r
initialisation
                          \rightarrowstop at diagonal \Rightarrow end of octant
while y < x ⁴
      if d < 0 then
           d = d+2*x+3
x = x+1 choose A
      else
           d = d+2*(x-y)+5
x = x+1
y = y-1
      endif
      SetPixel(c_x+x, c_y+y)
endwhile
                       Translate to the circle center
```

Tehnike optimizacije

Rasterizacija kroga

Version 1 – really bad

```
For x = -R to R

y = \operatorname{sqrt}(R \cdot R - x \cdot x);

Pixel (round(x), round(y));

Pixel (round(x), round(-y));
```

• Version 2 – slightly less bad

For x = 0 to 360

Pixel (round $(R \cdot \cos(x))$, round $(R \cdot \sin(x))$);

Uporabimo simetrijo

- Symmetry: If $(x_0 + a, y_0 + b)$ is on the circle, so are $(x_0 \pm a, y_0 \pm b)$ and $(x_0 \pm b, y_0 \pm a)$; hence there's an 8-way symmetry.
- But in a practical setting of considering pixel values, it depends on the fact that x_0 and y_0 are integers.

$$(x-x_0)^2 + (y-y_0)^2 = R^2$$

Skica inkrementalnega algoritma


```
y = y_0 + R; x = x_0; Pixel(x, y);
For (x = x_0+1; (x - x_0) < (y - y_0); x++) {
    if (decision var < 0) {
    /* move east */
    update decision_var;
    else {
    /* move south east */
    update decision var;
    y--;
    Pixel(x, y);
```

- Note: can replace all occurrences of x_0 and y_0 with 0, 0 and Pixel $(x_0 + x, y_0 + y)$ with Pixel (x, y)
- Essentially a shift of coordinates

Poligoni

Poligoni

Objects in 3D are made out of polygons

Polygons are a fundamental building block in graphics!

- In interactive graphics, polygons rule the world
- Two main reasons:
 - Lowest common denominator for surfaces
 - Can represent any surface with arbitrary accuracy
 - Splines, mathematical functions, volumetric isosurfaces...
 - Mathematical simplicity lends itself to simple, regular rendering algorithms
 - Like those we're about to discuss...
 - Such algorithms embed well in hardware

- Triangle is the *minimal unit* of a polygon
 - All polygons can be broken up into triangles
 - Triangles are guaranteed to be:
 - Planar
 - Convex

- There are a large number of algorithms for displaying polygons on raster displays.
- Each exploits some aspect of the types of polygons to be displayed:
 - some algorithms allow triangular polygons only
 - others require that the polygons are convex and non selfintersecting and have no holes

- *Polygon scan conversion* is a classic general purpose algorithm.
- For each *scan-line* we determine the *polygon edges* that intersect it, compute *spans* representing the interior portions of the polygons along this *scan-line* and fill the associated pixels.

• This represents the heart of a *scan-line rendering algorithm* used in many commercial products including Renderman and 3D Studio MAX.

- We might choose to use midpoint line algorithms to determine the boundary pixels at each edge incrementally.
- This will not work:
 - pixels will be shared by neighbouring polygons
 - particularly bad if polygons are semi-transparent
- Must ensure that polygons which share an edge do not share pixels.

polygon A interior

polygon B interior

edge pixels

- General Procedure:
 - determine intersection of scan-line with polygon edges
 - sort intersections according to increasing x value
 - fill pixels between successive pairs of x values
- Need to handle 4 cases to prevent pixel sharing:
 - if intersection has fractional x value, do we round up or down?
 - if inside (on left of span) round up, if outside (on right) round down
 - what happens if intersection is at an integer x value?
 - if on left of span assume its interior otherwise exterior
 - how do we handle shared vertices?
 - ignore pixel associated with y_{max} of an edge
 - how do we handle horizontal edges?
 - handled as a result of previous rule (lower edges not drawn)

- Determining intersections with polygon edges is expensive
 - rather than re-computing all intersections at each iteration, use incremental calculations
 - i.e. if we intersect edge e on scan-line i then it is likely we will intersect the edge on scan-line i+1 (this is known as edgecoherence)
- Assume slope of the edge > 1 (other edges obtained via symmetries)
 - incremental DDA calculation was: $y_{i+1} = y_i + 1$, $x_{i+1} = x_i + \frac{1}{m}$
 - slope m is given by $m = \frac{(y_{end} y_{start})}{(x_{end} x_{start})}$
 - note that *numerator* and *denominator* are integral \Rightarrow we can use integer DDA.

Metode rasterizacije

- Makes use of the coherence properties
 - Spatial coherence: Except at the boundary edges, adjacent pixels are likely to have the same characteristics
 - Span coherence: Pixels in a scan line will be set to same values for solid shaded primitives
 - Scan line coherence: Pixels in the adjacent scan lines are likely to have the same characteristics
- Uses intersections between area boundaries and scan lines to identify pixels that are inside the area

Prostorska koherenca

 Adjacent pixels are likely to have the same characteristics!!

Consider the following polygon:

 How do we know whether a given pixel on the scanline is inside or outside the polygon?

Za vrstico skeniranja določimo vse preseke poligona s to vrstico Preseke razvrstimo od prvega do zadnjega S štetjem parnosti ugotovimo, kdaj barvamo piksle Vodoravnih črt v štetju parnosti ne upoštevamo Končne točke Y_{min} se pri štetju parnosti upoštevajo Končne točke Y_{max} se pri štetju parnosti ne upoštevajo

Spodnji rob barvamo, ker je A is min od AH. AB pa ne šteje

Barvanje poligonov

- Find intersections of scanline with all polygon edges
- Sort intersections by increasing x
- Fill all interior pixels between pairs of intersections (odd-parity rule)

Barvanje poligonov

Prednosti metode Scan Line

- The algorithm is efficient
- Each pixel is visited only once
- Shading algorithms could be easily integrated with this method to obtain shaded area

Pravilo parnosti

#intersections = odd: point is inside polygon

Uporaba pravila parnosti


```
for each scanline
  edgeCnt = 0;
  for each pixel on scanline (1 to r)
    if (oldpixel->newpixel crosses edge)
       edgeCnt ++;
    // draw the pixel if edgeCnt odd
    if (edgeCnt % 2)
       setPixel(pixel);
```

Tabela robov in Tabela aktivnih robov

Fig. 3.27 Bucket-sorted edge table for polygon of Fig. 3.22.

Global edge table: contains all edges, sorted by minimal y-value Active edge table: edges intersected by current scanline

Fig. 3.28 Active-edge table for polygon of Fig. 3.22. (a) Scan line 9. (b) Scan line 10. (Note *DE*'s *x* coordinate in (b) has been rounded up for that left edge.)

Tabela robov (ET, Edge Table)

- Polje kazalcev A, dolžina enaka višini zaslona
- A[i] kaže na povezan seznam vseh robov z ymin = I
- Robovi v povezanem seznamu so razvrščeni glede na koordinato x verteksa ymin
- Rob v seznamu je predstavljen z: ymax, začetnim x, naklonom (1/m)

Tabela robov

Tabela aktivnih robov

- Povezan seznam vseh robov, ki sekajo tekočo vrstico skeniranja
- Seznam vedno uredimo glede na sekanje x z vrstico skeniranja
- Najprej dodamo vse robove iz te tabele z najmanjšim y
- S testom parnosti zapolnjujemo (barvamo) piksle na vrstici skeniranja
- Vrstico skeniranja premikamo navzgor
- Dodajamo vse robove iz tabele robov, pri katerih je vrednost ymin enaka vrstici skeniranja
- Odstranimo vse robove iz tabele aktivnih robov, pri katerih je vrednost ymax enaka vrstici skeniranja
- Posodobimo vrednosti x vrednosti presečišč vseh robov v aktivni tabeli robov in prerarvrstimo

Tabela aktivnih robov (AET, Active Edge Table)

(a) scan line 9

Algoritem

- The scan-line algorithm uses *edge-coherence* and *incremental integer calculations* for maximum efficiency:
 - create an *edge table* (ET) which lists all edges in order to their y_{min} value
 - keep track of an active edge table (AET) which lists those edges under the current scan-line
- As the scan progresses, edges are moved from the ET to the AET.
- An edge remains in the AET until y_{max} for that edge has been reached.
- At this point the edge is removed from the AET.

Algoritem

- Initialize edge table
- y = smallest ymin from edge table
- active edge table = empty
- Repeat:
 - Update active edge table: remove, add, sort on x
 - Fill pixels
 - Increment y
 - Update x for each span
- Untill active edge table and edge table empty

Koda algoritma

```
y = y of first non empty entry in ET
AET = null
repeat
    move all ET entries in slot y to AET
    sort AET entries according to x_{min}
    fill spans using pairs of AET entries
    for all AET members
        if y_{max} = y then remove from AET
    y = y+1
    for all AET members
        update numerator
        if numerator>denominator
            numerator=numerator-denominator
            x = x+1
until AET and ET empty
```

Prostorska koherenca (nadaljevanje)

- O(n) algorithm
 Hoffman, Mehlhorn, Rosenstiehl, and Tarjan,
 Sorting Jordan Sequence in Linear Time.
- However, not practical !!!

Prostorska koherenca (nadaljevanje)

Prostorska koherenca (nadaljevanje)

Scan Line Method

- Proceeding from left to right the intersections are paired and intervening pixels are set to the specified intensity
- Algorithm
 - Find the intersections of the scan line with all the edges in the polygon
 - Sort the intersections by increasing X-coordinates
 - Fill the pixels between pair of intersections

Special cases for Scan Line Method

- Overall topology should be considered for intersection at the vertices
- Intersections like I_1 and I_2 should be considered as two intersections
- Intersections like I_3 should be considered as one intersection
- Horizontal edges like E need not be considered

Efficiency Issues in Scan Line Method

 Intersections could be found using edge coherence the X-intersection value x_i of the lower scan line can be computed from the X-intersection value x_i of the preceeding scanline as

$$x_{i+1} = x_i + 1/m$$

$$1/m$$

- List of active edges could be maintained to increase efficiency
- Efficiency could be further improved if polygons are convex, much better if they are only triangles

- When scan-converting polygons we can exploit the incremental calculations to speed up vertex parameter interpolation:
 - interpolate colour for smoothly filled polygon
 - interpolate texture co-ordinates for continuous mapping of images
 - interpolate **normal** to polygon for smooth shading (*Phong Shading*)
 - interpolate depth for approximate depth testing

$$c_{\sigma} = (1 - t)a_{\sigma} + tb_{\sigma}$$

linear
$$\Rightarrow f(a+b) = f(a) + f(b)$$

bilinear $\Rightarrow f(sa+tb) = sf(a) + tf(b)$

$$e_{\sigma} = (1 - t_{e})a_{\sigma} + tc_{\sigma}$$

$$f_{\sigma} = (1 - t_{f})b_{\sigma} + td_{\sigma}$$

$$g_{\sigma} = (1 - t_{g})e_{\sigma} + tf_{\sigma}$$

If we know the 2D co-ordinates then:

$$t_e = \frac{e_y - a_y}{c_y - a_y}, t_f = \frac{f_y - b_y}{d_y - b_y}, t_g = \frac{g_x - e_x}{f_x - e_x}$$

- We can build the calculations into the incremental scan-conversion process.
- For many applications this is sufficient, however if will introduce errors if the parameter (e.g. colour, depth, texture coordinate) being interpolated is non-screen-

error

Implementation:

- interpolate parameter along each edge
- interpolate within space using interpolated value

Texture Mapping with Approximate Depth Information

True Perspective

True Edges, Linear Spans

Bilinear Approximation

True Edges. Quadratic Spans

Triangulacija

 Convex polygons easily triangulated

 Concave polygons present a challenge

Rasterizacija trikotnikov

 Interactive graphics hardware commonly uses edge walking or edge equation techniques for rasterizing triangles

Edge Walking

- Basic idea:
 - Draw edges vertically
 - Interpolate colors down edges
 - Fill in horizontal spans for each scanline
 - At each scanline, interpolate edge colors across span

Edge Walking: Notes

- Order three triangle vertices in x and y
 - Find middle point in y dimension and compute if it is to the left or right of polygon. Also could be flat top or flat bottom triangle
- We know where left and right edges are.
 - Proceed from top scanline downwards
 - Fill each span
 - Until breakpoint or bottom vertex is reached
- Advantage: can be made very fast
- Disadvantages:
 - Lots of finicky special cases

Edge Walking: Disadvantages

Fractional offsets:

- Be careful when interpolating color values!
- Beware of gaps between adjacent edges
- Beware of duplicating shared edges

- An edge equation is simply the equation of the line defining that edge
 - Q: What is the implicit equation of a line?
 - A: Ax + By + C = 0
 - Q: Given a point (x,y), what does plugging x & y into this equation tell us?
 - A: Whether the point is:
 - On the line: Ax + By + C = 0
 - "Above" the line: Ax + By + C > 0
 - "Below" the line: Ax + By + C < 0

• Edge equations thus define two *half-spaces*:

$$Ax+By+C>0$$

$$Ax+By+C=0$$

$$Ax+By+C<0$$

 And a triangle can be defined as the intersection of three positive half-spaces:

 So...simply turn on those pixels for which all edge equations evaluate to > 0:

Using Edge Equations

• Which pixels: compute min, max bounding

Computing Edge Equations

- Want to calculate A, B, C for each edge from (x_1, y_1) and (x_2, y_2)
- Treat it as a linear system:

$$Ax_1 + By_1 + C = 0$$
$$Ax_2 + By_2 + C = 0$$

- Notice: two equations, three unknowns
- What can we solve?
- Goal: solve for A & B in terms of C

Computing Edge Equations

- Set up the linear system:
- Multiply both sides by matrix inverse:

$$\begin{bmatrix} x_0 & y_0 \\ x_1 & y_1 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = -C \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} A \\ B \end{bmatrix} = \frac{-C}{x_0 y_1 - x_1 y_0} \begin{bmatrix} y_1 - y_0 \\ x_1 - x_0 \end{bmatrix}$$

- Let $C = x_0 y_1 x_1 y_0$ for convenience
 - Then $A = y_0 y_1$ and $B = x_0 x_1$

- So...we can find edge equation from two verts.
- Given three corners \mathbf{P}_{0} , \mathbf{P}_{1} , \mathbf{P}_{2} of a triangle, what are our three edges?
- How do we make sure the half-spaces defined by the edge equations all share the same sign on the interior of the triangle?
- A: Be consistent (Ex: $[\mathbf{P}_{0}\mathbf{P}_{1}]$, $[\mathbf{P}_{1}\mathbf{P}_{2}]$, $[\mathbf{P}_{2}\mathbf{P}_{0}]$)
- How do we make sure that sign is positive?
- A: Test, and flip if needed (*A*= -*A*, *B*= -*B*, *C*= -*C*)

Edge Equations: Code

- Basic structure of code:
 - Setup: compute edge equations, bounding box
 - (Outer loop) For each scanline in bounding box...
 - (Inner loop) ...check each pixel on scanline, evaluating edge equations and drawing the pixel if all three are positive

Triangle Rasterization Issues

- Exactly which pixels should be lit?
- A: Those pixels inside the triangle edges
- What about pixels exactly on the edge?
 - Draw them: order of triangles matters (it shouldn't)
 - Don't draw them: gaps possible between triangles
- We need a consistent (if arbitrary) rule
 - Example: draw pixels on left or top edge, but not on right or bottom edge

Polygon filling

- Simplest method to fill a polygonal area is to test every pixel in the raster to see if it lies inside the polygon.
- There are two methods to make an inside check
 - even-odd test
 - winding number test
- Bounding boxes can be used to improve performance

Filling Regions

- Color all pixels in a given region
- Region =
 - All pixels of a certain color (pixel-defined regions)
 - All pixels within a distance of another pixel'
 - All pixels within some given polygon (polygondefined region)

Filling Pixel-defined regions

- Region R is the set of all pixels having color C that are "connected" to a given pixel S
- Connected = there is path of adjacent pixels
- Adjacent
 - 4-adjacent
 - 8-adjacent

Filling Pixel-defined regions

Seed Fill Algorithm

- Basic idea
 - Start at a pixel interior to a polygon seed

Fill the others using connectivity

Seed Fill Algorithms

- Assumes that atleast one pixel interior to the polygon is known
- It is a recursive algorithm

• Useful in interactive paint packages

Seed 4-connected 8-connected

Seed Fill Algorithm (Cont')

4-connected

8-connected

Need a stack.

Why?

Seed Fill Algorithm (Cont')

Start Position

Seed Fill Algorithm (Cont')

Interior-defined

↓
flood fill algorithm

boundary-defined
↓
boundary fill algorithm

The stack may contain duplicated or unnecessary information !!!

Scan Line Seed Fill

Scan Line + Seed conversion + filling

Shani, U., "Filling Regions in Binary Raster Images: A Graph-Theoretic Approach", Computer Graphics, 14, (1981), 321-327

Scan Line Seed Fill (Cont')

Filling Pixel-defined regions

- Recursive flood-fill
 - If a pixel is part of the region, switch its color
 - Apply the same procedure to each neighbor

Neighbor = 4-connect or 8-connect

Filling Pixel-defined regions

```
floodFill (x, y, color) {
   If (getColor(x,y) = color) {
       setColor(x,y, color)
       floodFill(x-1, y, color)
       floodFill(x+1, y, color)
       floodFill(x, y+1, color)
       floodFill(x, y-1, color)
```

Filling Symbolic Regions

 If we have a description of the region (e.g. polygon), filling might be more efficient!

- Scan-line fill of polygon
 - For each scan line, find intersections with the polygon
 - Fill in the spans
 - Go to next scanline

How to draw things?

- Given: window on the screen
- Graphics API (e.g. OpenGL) has something of the form: plotPixel(int x, int y)

How to draw things?

plotPixel(x,y)

How to draw things?

- plotPixel(289,190)
- plotPixel(320,128)
- plotPixel(239,67)
- plotPixel(194,101)
- plotPixel(129,83)
- plotPixel(75,73)
- plotPixel(74,74)
- plotPixel(20,10)

Why is this impractical?

- Coordinates are expressed in screen space, but objects live in (3D) world space
- Resizing window implies we have to change coordinates of objects to be drawn
- We want to make a separation between:
 - values to describe geometrical objects
 - values needed to draw these objects on the screen

World window & viewport

 World window: specifies what part of the world should be drawn

 Viewport: rectangular area in the screen window in which we will draw

World window & viewport

$$sx = \frac{Vr - Vl}{Wr - Wl}x + (Vl + \frac{Vr - Vl}{Wr - Wl}Wl)$$

$$sy = \frac{Vt - Vb}{Wt - Wb}y + (Vb + \frac{Vt - Vb}{Wt - Wb}Wb)$$

- If x = WI, then sx = VI
- If x = Wr, then sx = Vr
- If $x = f^*(Wr-WI)$, then $sx = f^*(Vr-VI)$
- If x < WI, then sx < VI
- If x > Wr, then sx > Vr

... also for y and sy

World window

Pick size automatically

Automatic setting to preserve aspect ratio & center

R > W/H

Automatic setting to preserve aspect ratio & center

R < W/H