Algoritmi
rasterske grafike



Risanje primitivov

* Vector displays “paint” lines across the smooth
phosphor coating of the screen and generate
smooth curves or straight lines.

* Raster-scan based displays work on a grid

principle and are inherently unable to represent
smooth curves.

* Mass-market computer displays are based on
the raster-scan method.



Piksel NI majhen kvadrat

* Little Square Model pretends to
represent a pixel (picture element) as a
geometric square.

—e.g. pixel (i,)) is assumed to be:

\ X

where it is bounded by the square:
{(x,y)|i-05<x<i+0.5 j-05<y< j+0.5}




Piksel NI majhen kvadrat

* Does the pixel center lie on the
integers? —

/
/
4|

or does it lie on the half-integer?



Piksel NI majhen kvadrat

* “Half-Integerists” would place (i,))
correspond to the area of a plane.

{(x,y)[i-0.5¢x<i+0.5 j-05<y< j+0.5}




Piksel NI majhen kvadrat

* And the resolution-independent
coordinate system for an image Is:

-

(sx,8y)
See the little squares...

{(x, y)|sx <x<Width,sy < y < Height}



Piksel NI majhen kvadrat

* Apixel Is a point sample.
* It only exists at a point.

* A colour pixel will actually contain 3
samples: red, green and blue

* Apixel is not a little square.

* An image Is a rectilinear array of point
samples (discrete not continuous)




Piksel NI majhen kvadrat

* Why is the “little square model” popular:

— Rendering (conversion of abstract
geometry into viewable pixels)

— The mathematics is easier If we assume a
continuum.



Piksel NI majhen kvadrat

* Why shouldn’t the “little square model”
be identified with a single pixel?

[ ] L] L]
Magnlf]_catlon File Edit Image Layer Select Filter Yiew ‘window Help
| & leia.ipg @ 100% (RE M[=]Ed] | c Untit
= P 2 !

*a zoom looks
like little
squares, but
the actual pixel
hasn’t been
enlarged.




Piksel NI majhen kvadrat

* Why shouldn’t the “little square model”
be identified with a single pixel?

—Scanner Digitising a Picture
—a light source illuminates the paper

—light reflected is collected and measured by a colour
sensitive device

—the collected light is passed through a filtering shape
(never a square)

—pixels are determined by averaging overlapping shapes.



Uvod v 2D upodabljanje

* 2D primitives
— Line segments
— Ellipses and circles
— Polygons
— Curves

* Rasterization (Scan-Conversion)
— Turn 2D primitives into sets of pixels
— A Pixel Is Not A Little Square (Digital Signal Processing)
— Antialiasing
* Clipping
— Compute the intersection of a primitive and a shape
— Primitive: line segment, polygon
— Shape: rectangle, convex polygon



Neka] matematike

* Coordinate system: y axis upward or downward?
* Pixels are at the centres of integer coordinates

* Line segments
— Equation of a (2D) line: ax + by + c =0
— Direction: (-b a)
— Normal vector: (a b)

— Parametric equation of a segment [P1-P2]
X(t) = x1 + t*(x2-x1) = (1-t)*x1 + t*x2
y(t) =yl + t*(y2-yl) = (1-1)*yl + t*y2
tin[0..1]



Neka] matematike

* Polygons

— Closed sequence of line segments (P1 P2 ..
Pn)

— Different types

— Convex

— Concave = not convex

— Self-intersecting (8-shape)
— With holes



* Converting mathematical definitions to pixels

— We can only approximate the mathematical definition
* APixel is Not a Little Square
* Avoid holes
* Draw each pixel exactly once
— Nalive (expensive) approach
* Evaluate formulas on the pixel grid
— Clever approach
* Use integer calculations
* Avoid divides and multiplies
* Use incremental computations
* Use spatial coherence



Ravne crte In krogi

* In general, straight lines are neither vertical
nor horizontal.

* Pixels are roughly square and support only
horizontal and vertical lines well.

* The general case of line drawing must be
based upon some sort of compromise.

T T T



Ravne Crte

extend between two points:
(x1,y1), (x2,y2) eg line below = (3,0) and (13, 10)

y = meX + C

10




Problemi z ravnimi Crtami

the stair-step effect




Problemi z ravnimi Crtami

which pixels to colour?




Priblizno risanje Crt

* Assume square pixels.

* Assume that the line starts at (x1, y1) and
finishes at (x2, y2).

* Say that dx=x2-x1, dy=y2-y1

* |f we start with the simplest non-trivial case

where dx=dy, we can immediately see that a 45
degree diagonal line has one x step per y step.



Priblizno risanje Crt

* The basic requirement for an approximation is to
generate the minimum error at each step.

* The largest acceptable error must be half a
pixel.

* To simplify the problem, we consider only one
eighth of the possible angles, ie we choose to
consider only one octant. We can generalise
later using a mirroring technique.



Priblizno risanje Crt

* For each x step the difference between the
actual y position and the required y position is
calculated; If it is more than half a pixel, move

by one y step.
N
y -0
&4
/f\f@/o




EnacCba premice

* Equationofalineis y-mx+c=0

* For a line segment joining points P(x1,y2) and
P(x2,y2) slope  m=Y2 1=y
x2—x1 Ax

* Slope m means that for every unit increment in X the
Increment in Y IS m units
y

ml.




Nalivni algoritem rasterizacije Crt

— Line segment defined by PO P1

— Equation of line is
Y=mX+B
m = (y1-y0) / (x1-x0)
B =y0-m*x0
— Algorithm:
 start with the smallest of (x0,x1)
* compute corresponding value of y
* SetPixel(x, round(y))

* increment x and loop until reaching max(x0,x1)

— Cost: 1 float mult + 1 float add + 1 round per loop



Inkrementalni algoritem rasterizacije Crt

* Compute y using it's previous value
rather than from scratch

o y[i+1] = y[i] + m*(x[i+1]-x[i]), but since we
Increment X by 1:
yli+1] = y[i] + m

* Cost: 1 float add + 1 round per loop



Minimiziranje racunanj s plavajoco vejico

With straight lines one way of minimising the amount of
floating point calculation is:

if (X1 ==x2) => vertical line
elseif (y1 ==y2) => horizontal line
else

Vet = Yk + M

Allows the minimum of floating point calculation to be carried
out.



Digitalni diferencialni analizator (DDA)

Digital Differential Analyzer algorithm more popularly
known as DDA

This i1s an Incremental algorithm i.e. at each step it
makes incremental calculations based on the
calculations done during the preceding step

The algorithm uses floating point operations, which are
very cleverly avoided in an algorithm first proposed by J.
Bresenham of IBM,. The algorithm is well known as
Bresenham’s Line Drawing Algorithm.

A slight variation — Midpoint Line Drawing Algorithm —



Bresenham’s Line Algorithm (BLA)

*Scan-converts lines using only incremental integer calculations.
*BLA again assumes the line is sampled at unit x intervals.
*BLA uses the sign (+ve/-ve) of an integer (p) whose value is proportional to:

*the difference between the two candidate y values separation from the
calculated line path

*The differential line algorithm uses floating-point values (the
error value is a fraction) and floating point calculations are
slow compared with integer calculations.

*BLA can be used for curves as well as straight lines.



file:///JAVA_DEMO/BRESENHAM/bresenham.htm

Digitalni diferencialni analizator (DDA)

The DDA is a scan-conversion algorithm, which recognises that the x
interval is always 1 (corresponding to moving to the next pixel column in
the frame buffer) thus

Ykt = Yk + M
and the nearest scan-line to y«1 will be given by:
y = (int) (yk+1 + 0.5)



Digitalni diferencialni analizator (DDA)

* We consider the line in the first octant. Other cases
can be easily derived.

* Uses differential equation of the line

y;=m @l. +c

—y2—y1
where, m S

* Incrementing X-coordinate by 1

X. =X. +1
I "i_ prev

i :yi_prev+m
[xl.,round ( yl.)]

* llluminate the pixel




Algoritem DDA

differential := (y2-y1) / (x2-x1);

X :=x1;y:=vyl; { initialise start position }
error ;= 0; { no error yet }
setpixel(x,y);
while x<x2 do { while not past line end }
begin
error ;= error + differential, {accumulate error }
If error >= 1/2 then { largest error = 1/2 pixel }
begin
y = y+1; { step up one line }
error .= error-1; { error changed by 1 line }
end;
X 1= X+1; { next pixel along }
setpixel(x,y); { plot the pixel }

end:



Znacilnosti algoritma DDA

Ugodnosti:

* since it uses information about raster characteristics it is faster than
using y=mx+c

Mozni problemi:

*accumulation of round-off error over many successive additions can

result in pixel positions which drift away from the mathematically correct
line

*round-off error increases with line length
*rounding-off still computationally expensive.



Bresenham’s Algorithm: Midpoint Algorithm

* More efficient than DDA, attributed to Jack

Bresenham 1965.

— lines are single pixel wide

— selects closest pixel to the line (approximating
mid-point pixel cgargdingtes)
— Incremental and integer calculations only

* Assume slope satisfies

At each iteration we ¢

Intersects the next pix

4]

S

[ intercept

midpoint y value.

— if above then Al y,, =

~midpoint

— otherwise B y, =,

current pixel



Midpoint Line Algorithm

* The same incremental method for
scan converting lines can be
derived using an integer
formulation. In this the mid-point
between the East (E) and
NorthEast (NE) pixels is checked to ™
see on which side of the line it lies.
For this instead of y = mx + ¢, the
line equation of the form

* F(x) =(ax + by +c = 0) is used.

* Principle: If F(mid-point) is above
(<=0) the line then E is chosen,
otherwise NE Is chosen.

Demo >



Midpoint Line Algorithm

d =a(x,+1) + b(y,+1/2) + ¢
IS the decision variable.

If d > 0 then choose NE else
If d <=0 then choose E.

For an incremental algorithm,
we must compute d
iIncrementally. For that, let us
see what happens to M and d
for the next grid line.

We have two cases —
old choice was E or NE



Midpoint Line Algorithm (nadaievanje)

If the old choice is E, then
dpew= a(X,+2) + b(y,+1/2) + C

But dy,= a(x,+1) + b(y,+1/2) + c AME L

Henced ,=d, 4+ a R

Al

If the old choice is NE, then
dpew= a(X,+2) + b(y,+3/2) + C

Nowd  =d, +a+Dh.



Mldelnt Line AlgOrlthm (nadaljevanje)

Consider the line segment from (x,,y,) to (X,,Y,).
(y,-y, )X — (X,-X,)y + ¢ = 0 is the equation.
a= dy= (Y,-yy), b =-dx =-(x,x,)

And a + b =dy - dx
What should be d be to start with?

= F(x,y, +a+Db/2 F
X,,Y, Is on the line, so F(x,y,) =0
Thusd, =a + b/2

In order to avoid division by 2, we choose to make
our decision using 2d, = 2a+ b, which does not

change sign of d.

The first midpoint M= (x,+1, y,+1/2) ,,«-%f-fn)-
F(M))=d,=ax,+by,+c+a+Db/2 "'""'H?




Midpoint Line Algorithm

* |Input line end points (x1, y1), (x2, y2)
* Setx =x1andy =yl and SetLineColour(x,y)
* Calculate dX=x2—-x1anddY =y2-yl
* Calculate incrNE = 2*(dY - dX) and incrE = 2*dY
* Calculate d = 2*dY - dX
* While (x < x1)
{ x=x+1,
Ifd>0theny=y+1andd=d+incrNE else d =d + incrE,
SetLineColour(x,y)

}



Midpoint Line Algorithm

dx = x_end-x_start O
dy = y end-y_start
d = 2*dy-dx > initialisation
X = x_start
y = y_start <
while x < x_end
if d <= 0 then
d = d+(2"dy) }choose B
X = x+1
else
d = d+2*(dy-dx)
X = X+1 }choose A
y = y+1
endif
SetPixel(x,y)

endwhile



Midpoint Line Algorithm

dx = 5

. f d>0 then d=d-2, y=y+1
Line: (2,2) - (7,6) dy = 4 if d<o thiﬂ d=d+8 e
d =3
(7,7)
X |y |d
2 2 3
3 3 1 //
4 | 4 1 //
/
5 4 7
//

6 5 5 /
7 6 3

(0,0)



Advantages of Incremental Midpoint Line Algorithm

* |tis an incremental algorithm
* |t uses only integer arithmetic

* Provides the best fit approximation to the actual
ine




Algoritmi za kroge

« Circle with radius r and center (x, y,) is defined
parametrically as: y =y +,cos8

y =y, +rsinf

L could step through 6 from O to 21t plotting co-
ordinates:

— difficult to effectively control step-size to eliminate gaps and
minimise pixel overdrawing




Bresenham’s Circle Algorithm

 Another “least error” method

* The same simplifications are used as for line
drawing - solution is for one octant.

* The equation of a circle is
X+ y =R or X+y-R=0

* |f x and y are not precisely on the circle,
X!+ y? - R? will be non-zero (an error value).

* Error > 0 means (X,y) Is outside the circle,
Error < 0 means (X,y) Is inside the circle.



Midpoint Circle Algorithm

* Implicit form of the circle:

* Employ a similar scheme to t?e ) >
midpoint line algorithm: X~ Xc) + (y - yc) -r =0
— need only determine pixels for one

octant, other octants are related via (=x,¥) | (%,7) x=y
simple symmetries ;

— maintain decision variable d which
takes on values as follows: (-y,x

(K0 if (xl., yl.) is inside circle

d = E]: 0 if (xl.,yl.) is on circle
H> 0 if (xl., yl.) is outside circle

Demo >




Midpoint Circle Algorithm

 As with the line, we determine the value of the decision variable
by substituting the mid-point of the next pixel into the implicit
form of the circle:

d, :(Xi+1)2+§yi_%§_r2

d >0 d <O
A A

I B y: “"_*T\. B.\

X X+1 x4+ X x+1 +
— If d < U we cnhoose plxel2 A otherwise we tnoose pixer 7

— Note: we currently assume the circle is centered at the origin



Midpoint Circle Algorithm

* Again, as with the line algorithm, the choice of Aor B
can be used to determine the new value of d,,

* If A chosen then next midpoint has the following
decision variable:

i+2’yi_%glj di+1:(xi+2)2+@ﬁ’i“%§‘r2

=d +2x +3

]

* Otherwise if B iIs chosen then the next decision
variable |s given by
@i T2y, )gH U dy = (Xi +2)2 +§yi _EH —r?
] 2] 2

=d +2x -2y +5



Midpoint Circle Algorithm

* If we assume that the radius is an integral value, then
the first pixel drawn is (O, r) and the initial value for
the decision variable is given by:

El,r—lHD d0:1+Er2—r+lH—r2
] 2] ] 40

5
— Z -r
* Although the initial value is fractional, we note that all
other values are integers.
Ll we can round dowdg:zl_r



Midpoint Circle Algorithm

d =1-r

X =0 initialisation

y=r top at diagonal [0 end of octant
while y < x o OP 8

if d < 0 then

d = d+2*x+3
x = x+1 }choose A
else
d = d+2*(x-y)+5
X = X+1 }choose B
y =y-1
endif

SetPixel(c,+x,c ty)

endwhile \\

Translate to the circle center



Tehnike optimizacije

— Symmetry 3 e
Greatfer
than I
dy
Eﬁ.e====e.i9
dx
X
xﬂ
Slope Less than 1
dy o
dx‘
:J’




Rasterizacija kroga

* Version 1 — really bad ©.17)
Forx=-RtoR

y=sqrt(R*R —x * X);

Pixel (round(x), round(y));

Pixel (round(x), round(-y));

* Version 2 — slightly less bad (17, 0)
For x = 0 to 360

Pixel (round (R ¢ cos(x)), round(R * sin(x)));




Uporabimo simetrijo

Symmetry: If (x, + @, y, + b) is on the circle, so are (Xo: yo)
(X, xa, y,£b)and (x, £ b, y, + a); hence there’s an
8-way symmetry.

But in a practical setting of considering pixel values,
it depends on the fact that x, and y,, are integers. (X — X, )2 + (y — y0)2 = R?



Skica inkrementalnega algoritma

Fa N

\J/ A\ 74

Y =Y, + R; X=X, Pixel(x, y);
For (x = X,t1; (X —Xp) < (Y — Yo); X++) {
if (decision_var < 0) {
[* move east */
update decision_var;
}
else {
/* move south east */
update decision_var;
y--
}
Pixel(x, y);

SE

Note: can replace all occurrences of x, and y, with
0, 0 and Pixel (x, + x, y, + y) with Pixel (x, y)

* Essentially a shift of coordinates






* Objects in 3D are made out of polygons

* Polygons are a fundamental building block In
graphics!



Rasterizacija poligonov

* |n interactive graphics, polygons rule the world

e TWO main reasons:

— Lowest common denominator for surfaces
* Can represent any surface with arbitrary accuracy
* Splines, mathematical functions, volumetric isosurfaces...

— Mathematical simplicity lends itself to simple,
regular rendering algorithms

* Like those we're about to discuss...
* Such algorithms embed well in hardware



Rasterizacija poligonov

* Triangle is the minimal unit of a polygon

— All polygons can be broken up into
triangles
— Triangles are guaranteed to be:

* Planar
e Convex




Rasterizacija poligonov

* There are a large number of algorithms for displaying
polygons on raster displays.

* Each exploits some aspect of the types of polygons
to be displayed:

— some algorithms allow triangular polygons only

— others require that the polygons are convex and non self-
intersecting and have no holes

triangular convex non-convex  self-intersecting  religious



Rasterizacija poligonov

* Polygon scan conversion iIs a classic general purpose
algorithm.

* For each scan-line we determine the polygon edges
that intersect it, compute spans representing the
Interior portions of the polygons along this scan-line
and fill the associated pixels.

scan-line

NS [ R N
- | | lw |-

Intersections ,
pixel spans

* This represents the heart of a scan-line rendering algorithm
used in many commercial products including Renderman and 3D
Studio MAX.



Rasterizacija poligonov

* We might choose to use
midpoint line algorithms to
determine the boundary
pixels at each edge
Incrementally.

 This will not work:

— pixels will be shared by
neighbouring polygons

— particularly bad if polygons
are semi-transparent
* Must ensure that polygons
which share an edge do not
share pixels.

. polygon A interior
. polygon B interior

edge pixels




Rasterizaclja poligonov

* General Procedure:
— determine intersection of scan-line with polygon edges
— sort intersections according to increasing x value
— fill pixels between successive pairs of x values

* Need to handle 4 cases to prevent pixel sharing:
— If intersection has fractional x value, do we round up or
down?

* if inside (on left of span) round up, if outside (on right) round
down

— what happens if intersection is at an integer x value?
* if on left of span assume its interior otherwise exterior
— how do we handle shared vertices?
 ignore pixel associated with y  of an edge

— how do we handle horizontal edges?
* handled as a result of previous rule (lower edges not drawn)



Rasterizacija poligonov

integer x value is on

right = exterior
/

v

horizontal edge /
removed

Y max 1Ot
rounded down for A included

rounded up for B



Rasterizaclja poligonov

* Determining intersections with polygon edges is
expensive

— rather than re-computing all intersections at each iteration,
use incremental calculations

— i.e. if we intersect edge e on scan-line i then it is likely we will
intersect the edge on scan-line j+1 (this is known as edge-

coherence)
* Assume slope of the edge > 1 (other edges obtained
via symmetries) 1
— incremental DDA calculation was: Yin = Yit1, X, =X+ -
— slope m is given by m = Vet = Y]
(X - Xstart)

end

— note that numerator and denominator are integral [1 we can
use integer DDA.



Metode rasterizacije

* Makes use of the coherence properties

— Spatial coherence : Except at the boundary edges,
adjacent pixels are likely to have the same
characteristics

— Span coherence : Pixels in a scan line will be set to
same values for solid shaded primitives

— Scan line coherence : Pixels in the adjacent scan
lines are likely to have the same characteristics
* Uses intersections between area boundaries
and scan lines to identify pixels that are inside
the area



Prostorska koherenca

* Adjacent pixels are likely to have the same

characteristics!!




Rasterizacija poligonov

* Consider the following polygon:
D

* How do we know whether a given pixel on the scanline is
Inside or outside the polygon?



Rasterizacija poligonov

Za vrstico skeniranja doloCimo vse preseke poligona s to vrstico
Preseke razvrstimo od prvega do zadnjega

S Stetjem parnosti ugotovimo, kdaj barvamo piksle

Vodoravnih Crt v Stetju parnosti ne upostevamo

KoncCne toCke Y .. se pri Stetju parnosti upostevajo

KoncCne tocke Y. se pri Stetju parnosti ne upostevajo

Ne barvamo, ker je H maks od AH =

in HG ne Steje Ne barvamo, kej je D min od ED

\ In poveca Stevec za 2.
H % G - DC, pa ne upostevamo

A

Spodnji rob barvamo, ker je A is min od AH. AB pa ne Steje



Barvanje poligonov

 Find intersections of scanline with all
polygon edges

* Sort intersections by increasing X

* Fill all interior pixels between pairs of
Intersections (odd-parity rule)



=
o
-
o
=
o
=i
=
C
o
>
-
©
m

/4

L 3

*
* 1

X

*
(D
06

.4

*

*
()

()
*

()
*

>

(X

>
D@, |

o\
(D

(X

A

X

9

*

=5

()
%

A
*
*
*
‘

XD

),

)0,

X

o'

=y

>
*
*

\ .

O Other pixels in the span

o Span extrema



Prednostli metode Scan Line

* The algorithm is efficient
* Each pixel is visited only once

* Shading algorithms could be easily integrated
with this method to obtain shaded area



Pravilo parnosti

/

#intersections = odd: point is inside polygon



Uporaba pravila parnosti

for each scanline
edgeCnt = 0;
for each pixel on scanline (1 to r)
if (oldpixel->newpixel crosses edge)
edgeCnt ++;
// draw the pixel if edgeCnt odd
if (edgeCnt % 2)
setPixel(pixel);



Tabela robov In Tabela aktivnih robov

A
0 A
9 A
8 A
& - | 5
s 7 .
> = 2
844 6. 87 IR (14 §6 cD
_ xS —— 1111130 | 1
Fig. 3.22 Polygon and scan line 8.
4 A FA
3 & 912 0]
2 A AB BC
1 Sre—» 371 &5 70
0 A 3 € -
gy

Fig. 3.27 Bucket-sorted edge table for polygon of Fig. 3.22.

Global edge table: contains all

edges, sorted by minimal y-value o T T T mDE% o T
Active edge table: edges intersected E .
by current scanline @)

gt hor 1BE pal oo

11 {125 | et |13 ] 0|2

(b)

Fig. 3.28 Active-edge table for polygon of Fig. 3.22. (a) Scanline 9. (b) Scanline 10.
(Note DE's x coordinate in (b) has been rounded up for that left edge.)



Tabela robov &, edge Table)

* Polje kazalcev A, dolzina enaka viSini zaslona
* AJi] kaze na povezan seznam vseh robov z ymin = |

* Robovi v povezanem seznamu so razvrsceni glede na
koordinato x verteksa ymin

* Rob v seznamu je predstavljen z: ymax, zacetnim X,
naklonom (1/m)



2 4 6 8 10 12 14

>
@)
O
@)
— _.D_._ %
©
(b))
1)
qv]
— . . w
L
E C m M uluwl
X
x.mc._\ﬂ

o OO 0O M~ O O T O N +— O
—

~—
~—

a)eulplood A



Tabela aktivnih robov

@ Povezan seznam vseh robov, ki sekajo tekoco vrstico skeniranja

@ Seznam vedno uredimo glede na sekanje x z vrstico skeniranja

@ Najprej dodamo vse robove iz te tabele z najmanjSim y

@ S testom parnosti zapolnjujemo (barvamo) piksle na vrstici skeniranja
@ Vrstico skeniranja premikamo navzgor

@ Dodajamo vse robove iz tabele robov, pri katerih je vrednost ymin
enaka vrstici skeniranja

@ Odstranimo vse robove iz tabele aktivnih robov, pri katerih je vrednost
ymax enaka vrstici skeniranja

@ Posodobimo vrednosti x vrednosti presecCisc vseh robov v aktivni
tabeli robov in prerarvrstimo




Tabela aktivnih robov (AET, Active Edge Table)

(@) scanline9

pointer DE CD

(b)

scan line 10



Algoritem

* The scan-line algorithm uses edge-coherence and
iIncremental integer calculations for maximum efficiency:

— create an edge table (ET) which lists all edges in order to their
y.. value

— keep track of an active edge table (AET) which lists those edges
under the current scan-line

* As the scan progresses, edges are moved from the ET
to the AET.

« An edge remains in the AET until y_, for that edge has
been reached.

* At this point the edge is removed from the AET.



Algoritem

* |nitialize edge table
* y =smallest ymin from edge table
* active edge table = empty
* Repeat:
— Update active edge table: remove, add, sort on X
— Fill pixels
— Increment y
— Update x for each span

* Untill active edge table and edge table empty




Koda algoritma

y =y of first non empty entry in ET
AET = null
repeat
move all ET entries in slot y to AET
sort AET entries according to X ;,

fill spans using pairs of AET entries
for all AET members
if y,.. = Yy then remove from AET
y = y+l
for all AET members
update numerator
if numerator>denominator
numerator=numerator-denominator
X = x+1
until AET and ET empty




Prostorska koherenca (nadaljevanie)

Jordan (1,2,3,6,7,10,11,12,9,8,5,4)
Sequence i Jordan sort
Cr (1,2,3,4,5,6,7,8,9,10,11,12)

— O(n) algorithm
Hoffman, Mehlhorn, Rosenstiehl, and Tarjan,
Sorting Jordan Sequence in Linear Time.

— However, not practical !!!



Prostorska koherenca (nadaljevanje)




Prostorska koherenca (nadaljevanje)

/N
AN

1\/2,3 4,5\/6



Scan Line Method

* Proceeding from left to right
the intersections are paired and
Intervening pixels are set to the
specified intensity

* Algorithm
— Find the intersections of the scan line with all the edges
in the polygon
— Sort the intersections by increasing X-coordinates
— Fill the pixels between pair of intersections



Special cases for Scan Line Method

Overall topology should
be considered for
Intersection at the
vertices

Intersections like I, and I,

should be considered as
two intersections

Intersections like I, should

be considered as one
Intersection

Horizontal edges like E
need not be considered

Il
IZ
13
E—
n ...



Efficiency Issues in Scan Line Method

* Intersections could be found using edge coherence

the X-intersection value x,, of the lower scan line can be computed from the
X-intersection value x of the preceeding scanline as

Y

* List of active edges could be maintained to increase efficiency

* Efficiency could be further improved if polygons are convex, much
better if they are only triangles

.......................................................................................................................



Bilinear Interpolation

* When scan-converting polygons we can exploit the
Incremental calculations to speed up vertex
parameter interpolation:

— interpolate colour for smoothly filled polygon

— Interpolate texture co-ordinates for continuous mapping of
images

— Interpolate normal to polygon for smooth shading (Phong
Shading)

— Interpolate depth for approximate depth testing

Linear Interpolation

b

C, :(1—1‘)(10 +tb,




linear [J f(a+b) = f(a)+ f(b)
bilinear [J f(sa +tb) = sf(a) +tf(b)

/ b ettt
] f,=(1-t,|b, +d,
. S y gOZ(l—tg e,
¢ If we know the 2D co-ordinates then:
¢ = ey_ay,tf - fy_by,tg — 9" &
c,~a, d,-b, f.—e




Bilinear Interpolation

* We can build the calculations into the
Incremental scan-conversion process.

~or many applications this is sufficient,
nowever If will introduce errors if the
parameter (e.g. colour, depth, texture
coordinate) being interpolated i1s non-screen-

i’.
T

[
[ 1]

[
=

'S

7

-~ :7 77
..I' /]
i
]
/7]

]

L AT177)

[ /]
/7
L,

i’
[7
Ay
(27~
II’:
Ay,
Ay,
77
[ 17
A
/7
{ /

4
177
/77
'Il

I"
e
-,

/7

//
77
[ ]

>/

',

[/

£,

bilinear approximation error

correct perspective



Bilinear Interpolation

* Implementation:
— Interpolate parameter along each edge

— interpolatf within space using interpolated value
Arac

fronm the

We assume we have determined (X;,¥;), (XgYr)
and (X,,y,) using the normal incremental interpolation.

.-

(X,Yy Uz, :21+(Z4_Zl)(y _y)

) 4 1

Ve V.

dz. =z +(z - R

(XL’YL) (XP,ZP) (XRJYR) and z, - z, (23 Zz) (y3 ‘J’z)
X DzP:zL+(zR—zL)§XP:XL)
XR XL)

(X3,¥3
(XY, )



Texture Mapping with Approximate Depth Information

True Perspective Bilinear Approximation

True Edges, Linear Spans True Edges. Quadratic Spans



Triangulacija

* Convex polygons easily
triangulated

Y

« Concave polygons present
a challenge V




Rasterizacija trikotnikov

* Interactive graphics hardware commonly uses
edge walking or edge equation techniques for
rasterizing triangles



nui-lliiin
-....i--!._. W., ¥

R SRR S

.i. L S SRR G
AL
.i..i..i..i..i..i.i.i.
.1.1*#.{..{..1#;

-!... LRONESY ._.i-i-il
--r u-ll--l

lllllllllhlllllllll
T Ty

(@)
=
M
©
=
D
(@)
O
LL

Basic idea:
* Interpolate colors down edges

— Fill in horizontal spans for each

* At each scanline, interpolate
edge colors across span

— Draw edges vertically
scanline




Edge Walking: Notes

Order three triangle vertices in x and y

— Find middle point in y dimension and compute if it is to the left or
right of polygon. Also could be flat top or flat bottom triangle

* We know where left and right edges are.
— Proceed from top scanline downwards
— Fill each span
— Until breakpoint or bottom vertex is reached

* Advantage: can be made very fast

* Disadvantages:
— Lots of finicky special cases



Edge Walking: Disadvantages

 Fractional offsets:

OO0 08
CIO0 NN NG
CCTIDT 0008

* Be careful when interpolating color values!
* Beware of gaps between adjacent edges
* Beware of duplicating shared edges



Edge Equations

* An edge equation is simply the equation of the line
defining that edge
— Q: What is the implicit equation of a line?
—AlAx+By+C=0
— Q: Given a point (x,y), what does plugging x & y into this
equation tell us?
— A: Whether the point is:
* Ontheline:Ax+By+C=0

* “Above” the line: Ax + By+C >0
* “Below” the line: Ax+ By + C<0



Edge Equations

* Edge equations thus define two half-spaces:

Ax+By+C < 0



Edge Equations

* And a triangle can be defined as the
Intersection of three positive half-spaces:




Edge Equations

* S0...simply turn on those pixels for which
all edge equations evaluate to > O:

V

XXX
...l....
. .

o
¢¢¢¢¢¢¢
000000000
00000000
00004, )

000000
®
®
'®

<

,. .,.
90
()

*3

<>

<>

>

900099
( XX

>

<

<
<
<
<
<

»‘»'4
4.4.
..

oqpo
ooooooooooo-‘g,
08s oooooooo

»...» o,o. L2

()
=<5
()

<
<7
<
<
<

<
<
<
<7

o
®
®
®
®
®
®
®
0
0.0
(X
(X
(X
(X
(X
(X
(X

.
ofo.

<=7
....Q O..... o
....l ........‘

<7

0000000002~ 59080800000
100005~ 500000000 _,_ 00000
0..9000000000000000000
067 0000000000000000000
00//0000000000000000000
0000000000000000000000
ooooooooooooooooooooooooooooooooooooooooo

.
..
C X

o

<
o
.¢
.¢
.¢
.¢
o
o
(X
XX
(X

<7
(X
XX
XX
XX




Using Edge Equations

* Which pixels: compute min,max
t)()ljr1‘:||r]g3 : ifﬁfﬁgﬂgisp-nsp-nsp-nsp-qggp-

— |
it el ¢'¢i¢i¢ ¢'¢""t o Tty B, Tl T,

-+-+-+-+-+-+-+i+-+-+-+-+-+-+'

:+
i
=
.




Computing Edge Equations

Want to calculate A, B, C for each edge from (x,

y,) and (x,, y,)
Treat it as a linear system:
Ax,+ By, +C=0
Ax,+By,+C=0
Notice: two equations, three unknowns
What can we solve?
Goal: solve for A& B interms of C



Computing Edge Equations

* Set up the linear system:

 Xo Yo [A

 Multiply both sides %(1 Y1 ﬂhB

by matrix inverse:

(1]
|
|
O
0

-C 1= Yo
X0y1— X1)0

LI L]
[

I

<

-

LI L]

B

« Let C =Xy, - X,y, for convenience

— Then A=y, -y, and B = Xx,— X,



Edge Equations

* So...we can find edge equation from two verts.

« Given three corners P, P, P, of a triangle, what are our
three edges?

* How do we make sure the half-spaces defined by the
edge equations all share the same sign on the interior
of the triangle?

« A: Be consistent (Ex: [P,P], [P,P}], [P,P,])

* How do we make sure that sign is positive?
A: Test, and flip if needed (A= -A, B=-B, C=-C)



Edge Equations: Code

e Basic structure of code:

— Setup: compute edge equations, bounding
box

— (Outer loop) For each scanline in bounding
boxX...

— (Inner loop) ...check each pixel on
scanline, evaluating edge equations and
drawing the pixel if all three are positive



Triangle Rasterization Issues

Exactly which pixels should be Iit?
A: Those pixels inside the triangle edges

What about pixels exactly on the edge?

— Draw them: order of triangles matters (it shouldn’t)
— Don’t draw them: gaps possible between triangles
We need a consistent (if arbitrary) rule

— Example: draw pixels on left or top edge, but not on
right or bottom edge



Polygon filling

* Simplest method to fill a polygonal area is to test
every pixel in the raster to see if it lies inside the

polygon.
* There are two methods to make an inside check

— even-odd test
— winding number test

* Bounding boxes can be used to improve
performance



Filling Regions

* Color all pixels in a given region
* Region =
— All pixels of a certain color (pixel-defined
regions)
— All pixels within a distance of another pixel’

— All pixels within some given polygon (polygon-
defined region)




Filling Pixel-defined regions

* Region R is the set of all pixels having
color C that are “connected” to a given
pixel S

* Connected = there Is path of adjacent
pixels

* Adjacent
— 4-adjacent
— 8-adjacent



Filling Pixel-defined regions

THERE:

4-connect 8-connect




Seed Fill Algorithm

* Basic idea
— Start at a pixel interior to a polygon

T

seed

— Fill the others using connectivity

Demo >



Seed FIll Algorithms

* Assumes that atleast one pixel interior
to the polygon is known

* Itis a recursive algorithm

* Useful In Interactive paint packaaes

\
Seed 4-connected + 8 - connected .




Seed Fill Algorithm (Cont’)

8

4-connected 8-connected

Need a stack.

Why?



Seed Fill Algorithm (Cont’)

Start Position

W



Seed Fill Algorithm (Cont’)

6 6
4 4
2 2

0 2 4 6 8 10 0 2 4 6 8 10

Interior-defined boundary-defined
v v
flood fill algorithm boundary fill algorithm



Seed Fill Algorithm (Cont’)

6 A Fy ® 6 Fy

5 5 ¢4' v

4 4

3 \ 4 . 3 Hole

2 < \A 4 2 < O Y @
1 1

01 23456 789 01 23456 789

Boundary pixel Interior pixel [ Seed pixel

The stack may contain duplicated or unnecessary information !!!



Scan Line Seed FIll

Scan Line s Seed
conversion filling

Shani, U., “Filling Regions in Binary Raster Images:
A Graph-Theoretic Approach”, Computer Graphics,
14, (1981), 321-327



3

6 8§ 10 12 0 2 4 6 8 10 12

He i T

I3

6 8§ 10 12 0 2 4 6 8 10 12

Boundary pixel

Filled pixel

B Original seed pixel

0 2 4 6 8 10 12



Filling Pixel-defined regions

* Recursive flood-fill
— If a pixel is part of the region, switch its color
— Apply the same procedure to each neighbor

* Neighbor = 4-connect or 8-connect



Filling Pixel-defined regions

floodFIll (X, y, color) {

If (getColor(x,y) = color) {
setColor(x,y, color)
floodFill(x-1, y, color)
floodFill(x+1, y, color)
floodFill(x, y+1, color)
floodFill(x, y-1, color)

}



Filling Symbolic Regions

* If we have a description of the region (e.g.
polygon), filling might be more efficient!

* Scan-line fill of polygon

— For each scan line, find intersections with the
nolygon

— Fill in the spans
— GO to next scanline




How to draw things?

e Given: window on the screen

* Graphics API (e.g. OpenGL) has
something of the form:

plotPixel(int X, Int y)



How to draw things?

plotPixel(x,y)




How to draw things?

-

plotPixel(289,190)
plotPixel(320,128)
plotPixel(239,67)
plotPixel(194,101)
plotPixel(129,83)
plotPixel(75,73)
plotPixel(74,74)
plotPixel(20,10)



Why Is this impractical?

Coordinates are expressed in screen space, but
objects live in (3D) world space

Resizing window implies we have to change
coordinates of objects to be drawn

We want to make a separation between:
— values to describe geometrical objects
— values needed to draw these objects on the screen



World window & viewport

* World window:
specifies what part of the world should be

drawn

* Viewport:
rectangular area in the screen window In
which we will draw



World window & viewport

screen window

world window
viewport



Mapping: world window to viewport

A
 window |
Vt | [ |
Wt ------------------------- : 1
Wb Vb 1l I i
I | ' ' >




Mapping: world window to viewport

Maintain proportions!

A
- window |
ve [ |
Wt e : Nl '
Wb
i el 5
Vb | e :
I | ' ' >




Mapping: world window to viewport

+— <
—
v

W1 Wr A\ Vr

_Vr-=vi X+ (VI + Vr =VI wi)

 Wr-WI Wr —WI

SX

_ Vt -Vb y+ (Vb Vt-Vb Wh)
Wt —Wb Wt —Wb

S



Mapping: world window to viewport

e |f x =WI, then sx = VI
* If X =Wr, then sx = Vr
o If x =*(Wr-WI), then sx = f*(Vr-Vl)
e If x <WI, then sx < VI
* If x > Wr, then sx > Vr

* ... alsofory and sy



World window

* Pick size automatically

world window



Automatic setting to preserve aspect ratio & center

Aspect ratio R

R > W/H



Automatic setting to preserve aspect ratio & center

____________________________

Aspect ratio R

R <W/H



	Algoritmi rasterske grafike
	Risanje primitivov
	Piksel NI majhen kvadrat
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Uvod v 2D upodabljanje
	Nekaj matematike
	Slide 13
	Rasterizacija
	Ravne črte in krogi
	Ravne črte
	Problemi z ravnimi črtami
	Slide 18
	Približno risanje črt
	Slide 20
	Slide 21
	Enačba premice
	Naivni algoritem rasterizacije črt
	Inkrementalni algoritem rasterizacije črt
	Minimiziranje računanj s plavajočo vejico
	Digitalni diferencialni analizator (DDA)
	Bresenham’s Line Algorithm (BLA)
	Slide 28
	Slide 29
	Algoritem DDA
	Značilnosti algoritma DDA
	Bresenham’s Algorithm: Midpoint Algorithm
	Midpoint Line Algorithm
	Slide 34
	Midpoint Line Algorithm (nadaljevanje)
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Advantages of Incremental Midpoint Line Algorithm
	Algoritmi za kroge
	Bresenham’s Circle Algorithm
	Midpoint Circle Algorithm
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Tehnike optimizacije
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Poligoni
	Rasterizacija poligonov
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Metode rasterizacije
	Prostorska koherenca
	Slide 64
	Slide 65
	Barvanje poligonov
	Slide 67
	Prednosti metode Scan Line
	Pravilo parnosti
	Uporaba pravila parnosti
	Tabela robov in Tabela aktivnih robov
	Tabela robov (ET, Edge Table)
	Tabela robov
	Tabela aktivnih robov
	Tabela aktivnih robov (AET, Active Edge Table)
	Algoritem
	Algoritem
	Koda algoritma
	Prostorska koherenca (nadaljevanje)
	Slide 80
	Slide 81
	Scan Line Method
	Special cases for Scan Line Method
	Efficiency Issues in Scan Line Method
	Bilinear Interpolation
	Bilinear Interpolation
	Slide 87
	Slide 88
	Slide 89
	Triangulacija
	Rasterizacija trikotnikov
	Edge Walking
	Edge Walking: Notes
	Edge Walking: Disadvantages
	Edge Equations
	Slide 96
	Slide 97
	Slide 98
	Using Edge Equations
	Computing Edge Equations
	Slide 101
	Slide 102
	Edge Equations: Code
	Triangle Rasterization Issues
	Polygon filling
	Filling Regions
	Filling Pixel-defined regions
	Slide 108
	Seed Fill Algorithm
	Seed Fill Algorithms
	Seed Fill Algorithm (Cont’)
	Slide 112
	Slide 113
	Slide 114
	Scan Line Seed Fill
	Scan Line Seed Fill (Cont’)
	Slide 117
	Slide 118
	Filling Symbolic Regions
	How to draw things?
	Slide 121
	Slide 122
	Why is this impractical?
	World window & viewport
	Slide 125
	Mapping: world window to viewport
	Slide 127
	Slide 128
	Slide 129
	World window
	Automatic setting to preserve aspect ratio & center
	Slide 132

