Tehnike pospesevanja
upodabljanja v realnem casu
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@ Graphics hardware 2x faster in 6 months!
@ Wait... then it will be fast enough!
@ NOT!

@ We will never be satisfied

= Screen resolution: 2000x1000
m Realism: global illumination
= Geometrical complexity: no upper limit!




Kako v realnem Casu upodobiti tako kompleksno pokrajino?
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Overview

@ Graf scene

@ Metode izloCanja (culling technigues)
@ Nivoji podrobnosti (LODs)

o Plakati (billboards)
@ Kombiniranje metod



Graf scene

@ DAG — directed acyclic graph

= Simply an n-ary tree without loops
@ Uses: collision detection and faster rendering

internal node:.

<




Vsebina grafa scene

@ Leaves contains geometry

@ Each node holds a
= Bounding Volume (BV)
® pointers to children
m possibly a transform

@ Examples of BVs: spheres, boxes

@ The BV In a node contains all geometry
In its subtree




Primer grafa scene

scene graph
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Transformi v grafu scene

@ Put a transform In each internal node
@ Gilves instancing, and hierarchical animation

Move right,
Rotate 45°




Primer: noga tekaca

No hierarchy: A
one transform
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Hierarchy:3 transforms




Tehnike izloCanja

@ “To cull” means “to select from group”

@ |n graphics context: do not process data
that will not contribute to the final image

@ The “group” Is the entire scene, and the
selection Is a subset of the scene that we
do not consider to contribute




|zloCanje: pregled

@ Backface culling

@ Hierarchical view-frustum culling
@ Portal culling

@ Detall culling

@ Occlusion culling
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|zloCanje zadnjih strani

@ Simple technique to discard polygons
that faces away from the viewer

@ Can be used for:
» closed surface (example: sphere)

= or whenever we know that the backfaces never
should be seen (example: walls in a room)

@ Two methods (screen space, eye space)

@ Which stages benefits? Rasterizer, but
also Geometry (where test is done)



|zloCanje zadnjih strani

@ Often implemented for you in the AP
@ OpenGL: glCullFace(GL_BACK);
@ How to determine what faces away?

@ First, must have consistently oriented
polygons, e.g., counterclockwise

2

front facing 1 back facing



Kako izloCamo zadnje strani

5 Q O eye back
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screen space eye space




|zloCanje zakritih ploskev

@ How do you know which objects are visible
to camera before you so they are not
transformed or rendered?

@ Commonly used technigues
m Back-face removal
= Bounding spheres test




|zloCanje zadnjih strani - 1

@ Step 1.
= Remove all polygons outside of viewing frustum
@ Step 2:

= |f the dot product of the view vector and the
surface normal is > 0, it Is facing the viewer.

= Remove all polygons that are facing away from
the viewer.



|zloCanje zadnjih strani - 2

@ Step 3:

= Draw the visible faces in an order so the object
looks right.

@ Note:

m Surface normal = cross product of two co-planar
edges.

= View vector from normal point to viewpoint
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View-Frustum Culling

@ Bound every “natural” group of primitives
by a simple volume (e.q., sphere, box)

@ |f a bounding volume (BV) Is outside the
view frustum, then the entire contents of
that BV Is also outside (not visible)

@ Avoid further processing of such BV’s
and their containing geometry




Can we accelerate VF culling further?

@ Do what we always do in graphics...

@ Use a hierarchical approach, e.g,
the scene graph

@ Which stages benefits?
m Geometry and Rasterizer
® Bus between CPU and Geometry



Example of Hierarchical View Frustum Culling

5

camera




Test obsegajocCe krogle —1

@ Can be used before back-face removal to
discard entire objects all at once

@ This test only works If you have object
partitioned in convex areas, won't work for a
game world composed of a single mesh

@ The idea Is to create a bounding sphere
around each object and then transform T, the

center of each sphere and see If the entire
sphere Is outside the viewing frustrum
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Test obsegajocCe krogle — 2

@ |f none of the points pl-p5 is in the viewing
frustrum the object can not be visible, the
general test for point p(X,y,z) is outside

if ((z > far_z) || (z < near_z) || // z-axis
(fabs(x) < z)]|| //X-z plane
(fabs(y) < z)) //y-z plane
{

// point not 1in viewling frustrum

}



Test obsegajoce krogle — 3

@ |t Is Important to note that just because a
portion of the bounding sphere is inside the
viewing frustrum there is no guarantee that any
portion of the object is visible (unless the object
IS a sphere that fill the entire bounding sphere
exactly)

@ Might be better to use a bounding cube or
parallelepiped depending on the shape of the
object



Cells & Portals

@ Goal: walk through architectural
models (buildings, cities, catacombs)

@ These divide naturally into cells
= Rooms, alcoves, corridors...

@ Transparent portals connect cells
= Doorways, entrances, windows...

@ Notice: cells only see other cells through
portals



Portal Culling

@ Average: culled 20-50% of the polys in view
@ Speedup: from slightly better to 10 times




Portal culling example

@ |n a building from above
@ Circles are objects to be rendered




Portal Culling Algorithm

@ Divide into cells with portals (build graph)

@ For each frame:

m | ocate cell of viewer and init 2D AABB to whole
screen

m * Render current cell with VF cull w.r.t. AABB

® Traverse to closest cells (through portals)
® |ntersection of AABB & AABB of traversed portal

m GOoto *

Pomen AABRB




Tipl geometrije

@ Points
@ Lines, Rays and Line Segments
@ Spheres, Cylinders and Cones

. L L : AABB
@ Cubes, rectilinear boxes - Axis aligned or arbitrarily aligned
= AABB: Axis aligned bounding box
= OBB: Oriented bounding bo
| unding box OBB

@ k-dops — shapes bounded by planes at fixed orientations

@ Convex, manifold meshes — any mesh can be triangulated
= Concave meshes can be broken into convex chunks, by hand 8-dop

@ Triangle soup
@ More general curved surfaces, but not used (often) in games



Portal overestimation

@ To simplify:

actual portal overestimated portal



Cells & Portals

? |dea:
m Cells form the basic unit of PVS
m Create an adjacency graph of cells

m Starting with cell containing eyepoint, traverse
graph, rendering visible cells

= A cell is only visible if it can be seen through a
sequence of portals

So cell visibility reduces to testing portal sequences for a
line of sight...




Cells & Portals




Cells & Portals




Cells & Portals
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Cells & Portals




Cells & Portals
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Cells & Portals

@ View-independent solution: find all cells a
particular cell could possibly see:

B| C F G
| - |

C canonlyseeA, D, E,and H




Cells & Portals

@ View-independent solution: find all cells a
particular cell could possibly see:

- |

H will never see F



Cells and Portals

@ Questions:

® How can we detect whether a given cell is
visible from a given viewpoint?

® How can we detect view-independent visibility
between cells?
@ The key Insight:

= These problems reduce to eye-portal and
portal-portal visibility



Portal Culling Algorithm

@ When to exit:
= \When the current AABB Is empty

= \When we do not have enough time to render a
cell (“far away” from the viewer)

@ Also: mark rendered objects

@ Which stages benefits?
= Geometry, Rasterizer, and Bus

@ Source (for Performer):
http://www.cs.virginia.edu/~luebke/




|zloCanje podrobnositi

@ |dea: objects whose projected BV occupy
less than N pixels are culled

@ This Is an approximative algorithm as the
things you cull away may actually
contribute to the final image

@ Advantage: trade-off quality/speed

@ Which stages benefits?
= Geometry, Rasterizer, and Bus



Primer izloCanja podrobnosti

detail culling OF detail culling O
@ Not much difference, but 80-400% faster

@ Good when moving



Projekcija

@ Projection gets halved when distance is
doubled



Projekcija

d (normalized view direction)

(near plane) n

@ dot(d, (c-v)) Is distance along d

@ p=nr/dot(d, (c-v)) Is estimation of projected
radius

@ 7pis the area



|zloCanje zakritih predmetov

@ Main idea: Objects that

lies completely
“behind” another set of O

objects can be culled Q
@ Hard problem to solve 0

efficiently



Primer

@QQ —

@ Note that “Portal Culling” is an
algorithm for occlusion culling




Algoritem izloCanja zakritin predmetov

Use some kind of occlusion
representation O,

for each object g do:
if( not Occluded(O,,q))

render(g);
update(O,.9);
end;
end;



Primer z algoritmom izloCanja zakritih predmetov

@ Process from front to back
@ Maintain an occlusion horizon (green)




Primer z algoritmom izloCanja zakritih predmetov

@ To process tetrahedron (which is behind
grey objects):
» find axis-aligned box of projection
® compare against occlusion horizon

culled




Primer z algoritmom izloCanja zakritih predmetov

@ When an object is considered visible:

@ Add its “occluding power” to the
occlusion representation




Tvorba LOD

@ Geometrical simplification which removes polygones from
the original model. This may or may not preserve topologie.
For an other overview, you migh want to take a look at:

@  Strutural simplification which uses a new, simpler
representation of the object.

@ Scene simplification which replaces areas of the scene with
simpler representations.



Nivoji podrobnosti upodabljanja (LOD)

@ Use different levels of detall at different
distances from the viewer

@ More triangles closer to the viewer




Nivoji podrobnosti upodabljanja (LOD)

@ Not much visual difference, but a lot faster

Use area of projection of BV to select
appropriate LOD



Graf scene z LOD

Car chair




Plakati (billboards)

Constrained to the Z-axis

Demo

m  Orienting a polygon relative to the
viewer

m Different alternatives

= Always facing the viewer

m Smoke, fire, fog, explosions,
clouds

= Align the surface normal to the
view vector

= Constraining one or more axis
n Atree.




Namesto modela plakat

Tehnika plakata
Namesto kompleksnih modelov le k nam obrnjena tekstura

Free movement around
aslicing-based tree and the
original mesh tree.




Namesto modela plakat

Transparent




ija
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® 6 pogledov, ortogonalna proje

@ Drevo posnamemo




Implementacija

@ Postavimo vse poglede v prostor.




Podrobnosti implementacije

@ Naloziti moramo teksture, jim spremeniti
velikost (povprecCenje z upostevanjem
kanala alfa), da ne porabimo prevec
pomnilnika.

@ Pazimo na atan2(), inicializiramo 3D
kartico.




@ Najdemo najblizja dva pogleda.

@ Projeciramo poligone v koordinatni
sistem zaslona.

@ DoloCimo prosojnost posameznega ' A

pogleda.
= Funkcija za blending je (1-alfa)*ozadje
+ alfa*poligon
m  Prosojnost bliznjega pogleda je med
100% in 50%, oddaljenega med 50%
in 0%. Prehajanje mora biti mehko.

@ RiSemo od zadaj naprej, najprej bolj
oddaljen pogled, potem pa Se blizniji.
= Kompliciranje z z-bufferji ali rezanjem
oddaljenega pogleda ob bliznji ne
naredijo velike razlike.



@ RiSemo od zadaj naprej,
najprej bolj oddaljen
pogled, potem pa Se bliznji
= Kompliciranje z z-bufferji ali

rezanjem oddaljenega pogleda

ob bliznji ne naredijo velike
razlike.

Movie


file:///MOVIES/LOD_RT/drevesa.avi

Skybox

m A surrounding environment, always
present. Relative to the camera.

m  Simulates the sky, far away mountains,
etc...

m  Always drawn "behind” all other objects

m [orender it

Clear the depth and color buffers
Apply camera transformation L
Disable the depth buffer test and writes
Draw the skybox

Enable depth buffer test and writes
Draw the rest of the scene

me;m R W N -






Kombinacija tehnik

@ Not trivial to combine!

@ VF Cull + LOD == minimal if serious
about performance

@ Indoors: LOD + portal culling

@ Outdoors (cities, suburbia): VF Cull +
LOD + occlusion culling




Real-Time Rendering?

@ |n computer graphics, “real-time” is used
In a soft way: say >30 fps for most
frames

@ |n other contexts, It's a tougher
requirement: the framerate must never
be <30 fps, I.e., constant framerate

@ \What can we do?
m Reactive LOD algorithm
= Reactive detall culling
= Reactive visual quality



Odkrivanje trkov

@ To get interesting and more realistic
Interaction between geometric objects Iin
an application

@ Cannot test each triangle against each
other: O(n*m)

@ Alas, need smarter approaches

@ Use BVs because these are cheap to
test

@ Use a scene graph (hiearchy)
» For efficiency use only one triangle per leaf




Kolizija 2 grafov scene?

@ Three cases:

@ Reach two internal nodes’ BVs
= |f not overlap, then exit

= |f overlap, then descend into the children of the internal
node with largest volume

@ Reach an internal node and a triangle
m Descend into the internal node

@ |f you reach two triangles
= Test for overlap

@ Start recursion with the two roots of the scene
graphs




Bounding Volumes in Collision Detection

@ Wanted: tight fitting BV, and fast to test for
overlap

@ Common choices are
m Spheres
= Axis aligned box
= Oriented box




Triangle-triangle overlap test

@ Compute the line of intersection between
the two planes

@ Compute the intersection interval
between this line and triangles
m gives two intervals

@ If intervals overlap then triangles overlap!



Simpler collision detection

@ Only shoot rays to find collisions, I.e.,
approximate an object with a set of rays

@ Cheaper, but less accurate
@ Can use the scene graph again or a BSP tree

o)

Q\




Can you compute the time of a collision?

RYAYAYAY.

@ Move ball, test for hit, move ball, test for
hit... can get “quantum effects”!

@ |n some cases it's possible to find
closed-form expression: t=s/v
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