Tehnike pospesevanja
upodabljanja v realnem casu

E

@ Graphics hardware 2x faster in 6 months!
@ Wait... then it will be fast enough!
@ NOT!

@ We will never be satisfied

= Screen resolution: 2000x1000
m Realism: global illumination
= Geometrical complexity: no upper limit!

Kako v realnem Casu upodobiti tako kompleksno pokrajino?

LAP 1/3

oo 48537

TIME 65

Overview

@ Graf scene

@ Metode izloCanja (culling technigues)
@ Nivoji podrobnosti (LODs)

o Plakati (billboards)
@ Kombiniranje metod

Graf scene

@ DAG — directed acyclic graph

= Simply an n-ary tree without loops
@ Uses: collision detection and faster rendering

internal node:.

<

Vsebina grafa scene

@ Leaves contains geometry

@ Each node holds a
= Bounding Volume (BV)
® pointers to children
m possibly a transform

@ Examples of BVs: spheres, boxes

@ The BV In a node contains all geometry
In its subtree

Primer grafa scene

scene graph

root

/

circles=BVs
@ /

Transformi v grafu scene

@ Put a transform In each internal node
@ Gilves instancing, and hierarchical animation

Move right,
Rotate 45°

Primer: noga tekaca

No hierarchy: A
one transform

X
-+

Hierarchy:3 transforms

Tehnike izloCanja

@ “To cull” means “to select from group”

@ |n graphics context: do not process data
that will not contribute to the final image

@ The “group” Is the entire scene, and the
selection Is a subset of the scene that we
do not consider to contribute

|zloCanje: pregled

@ Backface culling

@ Hierarchical view-frustum culling
@ Portal culling

@ Detall culling

@ Occlusion culling

Prim
eri |Z| v
Ocan'
ja

vie
w frustum
O detai
all

backface

““

.
“““““

‘‘‘‘‘‘‘
‘‘‘‘

“l‘
PR

.

.

|zloCanje zadnjih strani

@ Simple technique to discard polygons
that faces away from the viewer

@ Can be used for:
» closed surface (example: sphere)

= or whenever we know that the backfaces never
should be seen (example: walls in a room)

@ Two methods (screen space, eye space)

@ Which stages benefits? Rasterizer, but
also Geometry (where test is done)

|zloCanje zadnjih strani

@ Often implemented for you in the AP
@ OpenGL: glCullFace(GL_BACK);
@ How to determine what faces away?

@ First, must have consistently oriented
polygons, e.g., counterclockwise

2

front facing 1 back facing

Kako izloCamo zadnje strani

5 Q O eye back
@

0 front

0
front back

screen space eye space

|zloCanje zakritih ploskev

@ How do you know which objects are visible
to camera before you so they are not
transformed or rendered?

@ Commonly used technigues
m Back-face removal
= Bounding spheres test

|zloCanje zadnjih strani - 1

@ Step 1.
= Remove all polygons outside of viewing frustum
@ Step 2:

= |f the dot product of the view vector and the
surface normal is > 0, it Is facing the viewer.

= Remove all polygons that are facing away from
the viewer.

|zloCanje zadnjih strani - 2

@ Step 3:

= Draw the visible faces in an order so the object
looks right.

@ Note:

m Surface normal = cross product of two co-planar
edges.

= View vector from normal point to viewpoint

View pﬂint I Voo Vo]"I:]

-
-

Lot ¥ View vector A Surface normal

T gy = Vor % Vg

it (7.0 V1> 0then
poly is visibie

¥ R o

Lo P «— All meshes made from triangles

> 1 X

Note: object and camera in world coordinates

View-Frustum Culling

@ Bound every “natural” group of primitives
by a simple volume (e.q., sphere, box)

@ |f a bounding volume (BV) Is outside the
view frustum, then the entire contents of
that BV Is also outside (not visible)

@ Avoid further processing of such BV’s
and their containing geometry

Can we accelerate VF culling further?

@ Do what we always do in graphics...

@ Use a hierarchical approach, e.g,
the scene graph

@ Which stages benefits?
m Geometry and Rasterizer
® Bus between CPU and Geometry

Example of Hierarchical View Frustum Culling

5

camera

Test obsegajocCe krogle —1

@ Can be used before back-face removal to
discard entire objects all at once

@ This test only works If you have object
partitioned in convex areas, won't work for a
game world composed of a single mesh

@ The idea Is to create a bounding sphere
around each object and then transform T, the

center of each sphere and see If the entire
sphere Is outside the viewing frustrum

Totally excluded

Each object contained
within bounding sphere

Pl

-- far _:
Tcrtallly clipping
= pantained plane
Ps g el ke Yiewing frustrum
\— 1%, (o
Partially
contained
............................ ne ar _:
clipping plane
Field of view 80" ——=
-« ¥
X X

Top view ¥ = { plane

Test obsegajocCe krogle — 2

@ |f none of the points pl-p5 is in the viewing
frustrum the object can not be visible, the
general test for point p(X,y,z) is outside

if ((z > far_z) || (z < near_z) || // z-axis
(fabs(x) < z)]|| //X-z plane
(fabs(y) < z)) //y-z plane
{

// point not 1in viewling frustrum

}

Test obsegajoce krogle — 3

@ |t Is Important to note that just because a
portion of the bounding sphere is inside the
viewing frustrum there is no guarantee that any
portion of the object is visible (unless the object
IS a sphere that fill the entire bounding sphere
exactly)

@ Might be better to use a bounding cube or
parallelepiped depending on the shape of the
object

Cells & Portals

@ Goal: walk through architectural
models (buildings, cities, catacombs)

@ These divide naturally into cells
= Rooms, alcoves, corridors...

@ Transparent portals connect cells
= Doorways, entrances, windows...

@ Notice: cells only see other cells through
portals

Portal Culling

@ Average: culled 20-50% of the polys in view
@ Speedup: from slightly better to 10 times

Portal culling example

@ |n a building from above
@ Circles are objects to be rendered

Portal Culling Algorithm

@ Divide into cells with portals (build graph)

@ For each frame:

m | ocate cell of viewer and init 2D AABB to whole
screen

m * Render current cell with VF cull w.r.t. AABB

® Traverse to closest cells (through portals)
® |ntersection of AABB & AABB of traversed portal

m GOoto *

Pomen AABRB

Tipl geometrije

@ Points
@ Lines, Rays and Line Segments
@ Spheres, Cylinders and Cones

. L L : AABB
@ Cubes, rectilinear boxes - Axis aligned or arbitrarily aligned
= AABB: Axis aligned bounding box
= OBB: Oriented bounding bo
| unding box OBB

@ k-dops — shapes bounded by planes at fixed orientations

@ Convex, manifold meshes — any mesh can be triangulated
= Concave meshes can be broken into convex chunks, by hand 8-dop

@ Triangle soup
@ More general curved surfaces, but not used (often) in games

Portal overestimation

@ To simplify:

actual portal overestimated portal

Cells & Portals

? |dea:
m Cells form the basic unit of PVS
m Create an adjacency graph of cells

m Starting with cell containing eyepoint, traverse
graph, rendering visible cells

= A cell is only visible if it can be seen through a
sequence of portals

So cell visibility reduces to testing portal sequences for a
line of sight...

Cells & Portals

Cells & Portals

Cells & Portals

Cells & Portals
R /@\\
/F

G

| - |

® Q&@ﬁ@

Cells & Portals

Cells & Portals

Cells & Portals

A __ : %\
e
B C X/F G
H

Cells & Portals

@ View-independent solution: find all cells a
particular cell could possibly see:

B| C F G
| - |

C canonlyseeA, D, E,and H

Cells & Portals

@ View-independent solution: find all cells a
particular cell could possibly see:

- |

H will never see F

Cells and Portals

@ Questions:

® How can we detect whether a given cell is
visible from a given viewpoint?

® How can we detect view-independent visibility
between cells?
@ The key Insight:

= These problems reduce to eye-portal and
portal-portal visibility

Portal Culling Algorithm

@ When to exit:
= \When the current AABB Is empty

= \When we do not have enough time to render a
cell (“far away” from the viewer)

@ Also: mark rendered objects

@ Which stages benefits?
= Geometry, Rasterizer, and Bus

@ Source (for Performer):
http://www.cs.virginia.edu/~luebke/

|zloCanje podrobnositi

@ |dea: objects whose projected BV occupy
less than N pixels are culled

@ This Is an approximative algorithm as the
things you cull away may actually
contribute to the final image

@ Advantage: trade-off quality/speed

@ Which stages benefits?
= Geometry, Rasterizer, and Bus

Primer izloCanja podrobnosti

detail culling OF detail culling O
@ Not much difference, but 80-400% faster

@ Good when moving

Projekcija

@ Projection gets halved when distance is
doubled

Projekcija

d (normalized view direction)

(near plane) n

@ dot(d, (c-v)) Is distance along d

@ p=nr/dot(d, (c-v)) Is estimation of projected
radius

@ 7pis the area

|zloCanje zakritih predmetov

@ Main idea: Objects that

lies completely
“behind” another set of O

objects can be culled Q
@ Hard problem to solve 0

efficiently

Primer

@QQ —

@ Note that “Portal Culling” is an
algorithm for occlusion culling

Algoritem izloCanja zakritin predmetov

Use some kind of occlusion
representation O,

for each object g do:
if(not Occluded(O,,q))

render(g);
update(O,.9);
end;
end;

Primer z algoritmom izloCanja zakritih predmetov

@ Process from front to back
@ Maintain an occlusion horizon (green)

Primer z algoritmom izloCanja zakritih predmetov

@ To process tetrahedron (which is behind
grey objects):
» find axis-aligned box of projection
® compare against occlusion horizon

culled

Primer z algoritmom izloCanja zakritih predmetov

@ When an object is considered visible:

@ Add its “occluding power” to the
occlusion representation

Tvorba LOD

@ Geometrical simplification which removes polygones from
the original model. This may or may not preserve topologie.
For an other overview, you migh want to take a look at:

@ Strutural simplification which uses a new, simpler
representation of the object.

@ Scene simplification which replaces areas of the scene with
simpler representations.

Nivoji podrobnosti upodabljanja (LOD)

@ Use different levels of detall at different
distances from the viewer

@ More triangles closer to the viewer

Nivoji podrobnosti upodabljanja (LOD)

@ Not much visual difference, but a lot faster

Use area of projection of BV to select
appropriate LOD

Graf scene z LOD

Car chair

Plakati (billboards)

Constrained to the Z-axis

Demo

m Orienting a polygon relative to the
viewer

m Different alternatives

= Always facing the viewer

m Smoke, fire, fog, explosions,
clouds

= Align the surface normal to the
view vector

= Constraining one or more axis
n Atree.

Namesto modela plakat

Tehnika plakata
Namesto kompleksnih modelov le k nam obrnjena tekstura

Free movement around
aslicing-based tree and the
original mesh tree.

Namesto modela plakat

Transparent

ija

1IZ veC smerl.
kc

® 6 pogledov, ortogonalna proje

@ Drevo posnamemo

Implementacija

@ Postavimo vse poglede v prostor.

Podrobnosti implementacije

@ Naloziti moramo teksture, jim spremeniti
velikost (povprecCenje z upostevanjem
kanala alfa), da ne porabimo prevec
pomnilnika.

@ Pazimo na atan2(), inicializiramo 3D
kartico.

@ Najdemo najblizja dva pogleda.

@ Projeciramo poligone v koordinatni
sistem zaslona.

@ DoloCimo prosojnost posameznega ' A

pogleda.
= Funkcija za blending je (1-alfa)*ozadje
+ alfa*poligon
m Prosojnost bliznjega pogleda je med
100% in 50%, oddaljenega med 50%
in 0%. Prehajanje mora biti mehko.

@ RiSemo od zadaj naprej, najprej bolj
oddaljen pogled, potem pa Se blizniji.
= Kompliciranje z z-bufferji ali rezanjem
oddaljenega pogleda ob bliznji ne
naredijo velike razlike.

@ RiSemo od zadaj naprej,
najprej bolj oddaljen
pogled, potem pa Se bliznji
= Kompliciranje z z-bufferji ali

rezanjem oddaljenega pogleda

ob bliznji ne naredijo velike
razlike.

Movie

file:///MOVIES/LOD_RT/drevesa.avi

Skybox

m A surrounding environment, always
present. Relative to the camera.

m Simulates the sky, far away mountains,
etc...

m Always drawn "behind” all other objects

m [orender it

Clear the depth and color buffers
Apply camera transformation L
Disable the depth buffer test and writes
Draw the skybox

Enable depth buffer test and writes
Draw the rest of the scene

me;m R W N -

Kombinacija tehnik

@ Not trivial to combine!

@ VF Cull + LOD == minimal if serious
about performance

@ Indoors: LOD + portal culling

@ Outdoors (cities, suburbia): VF Cull +
LOD + occlusion culling

Real-Time Rendering?

@ |n computer graphics, “real-time” is used
In a soft way: say >30 fps for most
frames

@ |n other contexts, It's a tougher
requirement: the framerate must never
be <30 fps, I.e., constant framerate

@ \What can we do?
m Reactive LOD algorithm
= Reactive detall culling
= Reactive visual quality

Odkrivanje trkov

@ To get interesting and more realistic
Interaction between geometric objects Iin
an application

@ Cannot test each triangle against each
other: O(n*m)

@ Alas, need smarter approaches

@ Use BVs because these are cheap to
test

@ Use a scene graph (hiearchy)
» For efficiency use only one triangle per leaf

Kolizija 2 grafov scene?

@ Three cases:

@ Reach two internal nodes’ BVs
= |f not overlap, then exit

= |f overlap, then descend into the children of the internal
node with largest volume

@ Reach an internal node and a triangle
m Descend into the internal node

@ |f you reach two triangles
= Test for overlap

@ Start recursion with the two roots of the scene
graphs

Bounding Volumes in Collision Detection

@ Wanted: tight fitting BV, and fast to test for
overlap

@ Common choices are
m Spheres
= Axis aligned box
= Oriented box

Triangle-triangle overlap test

@ Compute the line of intersection between
the two planes

@ Compute the intersection interval
between this line and triangles
m gives two intervals

@ If intervals overlap then triangles overlap!

Simpler collision detection

@ Only shoot rays to find collisions, I.e.,
approximate an object with a set of rays

@ Cheaper, but less accurate
@ Can use the scene graph again or a BSP tree

o)

Q\

Can you compute the time of a collision?

RYAYAYAY.

@ Move ball, test for hit, move ball, test for
hit... can get “quantum effects”!

@ |n some cases it's possible to find
closed-form expression: t=s/v

	Slide 1
	Motivation
	Slide 3
	Big Models: Plant Ecosystem Simulation
	Overview
	Graf scene
	Vsebina grafa scene
	Primer grafa scene
	Transformi v grafu scene
	Primer: noga tekača
	Tehnike izločanja
	Izločanje: pregled
	Primeri izločanja
	Izločanje zadnjih strani
	Slide 15
	Kako izločamo zadnje strani
	Izločanje zakritih ploskev
	Izločanje zadnjih strani - 1
	Izločanje zadnjih strani - 2
	Slide 20
	View-Frustum Culling
	Can we accelerate VF culling further?
	Example of Hierarchical View Frustum Culling
	Test obsegajoče krogle –1
	Slide 25
	Test obsegajoče krogle – 2
	Test obsegajoče krogle – 3
	Cells & Portals
	Portal Culling
	Portal culling example
	Portal Culling Algorithm
	Tipi geometrije
	Portal overestimation
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Cells and Portals
	Slide 45
	Izločanje podrobnosti
	Primer izločanja podrobnosti
	Projekcija
	Slide 49
	Izločanje zakritih predmetov
	Primer
	Algoritem izločanja zakritih predmetov
	Primer z algoritmom izločanja zakritih predmetov
	Slide 54
	Slide 55
	Tvorba LOD
	Nivoji podrobnosti upodabljanja (LOD)
	Slide 58
	Graf scene z LOD
	Plakati (billboards)
	Namesto modela plakat
	Slide 62
	Rešitev
	Implementacija
	Podrobnosti implementacije
	Risanje poljubnega pogleda 1
	Risanje poljubnega pogleda 2
	Skybox
	Slide 69
	Kombinacija tehnik
	Real-Time Rendering?
	Odkrivanje trkov
	Kolizija 2 grafov scene?
	Bounding Volumes in Collision Detection
	Triangle-triangle overlap test
	Simpler collision detection
	Can you compute the time of a collision?

