Zakrite ploskve

Problem outline

* Given a set of 3D objects and a viewing
specification, we wish to determine which
lines or surfaces are visible, so that we do
not needlessly calculate and draw surfces,
which will not ultimately be seen by the
viewer, or which might confuse the viewer.

Approaches

* There are 2 fundamental approaches to
the problem.

— Object space
— Image space

Object space

* Object space algorithms do their work on the objects
themselves before they are converted to pixels in the
frame buffer. The resolution of the display device is
Irrelevant here as this calculation is done at the
mathematical level of the objects

* Pseudo code...
- for each object a in the scene

* determine which parts of object a are visible
* draw these parts in the appropriate colour

* Involves comparing the polygons in object a to other
polygons in a and to polygons in every other object in the
scene.

Image space

* |Image space algorithms do their work as the
objects are being converted to pixels in the
frame buffer. The resolution of the display device
IS Important here as this is done on a pixel by
pixel basis.

* Pseudo code...

- for each pixel 1in the frame buffer

* determine which polygon 1is closest to the
viewer at that pixel location

* colour the pixel with the colour of that
polygon at that location

Algoritmi dolocanja vidnosti

* Object space
— Back-face culling

* Image space
— z-buffer algorithm

* Hybrid
— Depth-sort

Postopki ugotavljanja vidnosti

Z-Buffer
Algorithmus

> Depth-Sortin
Prioritaten- - = ‘
listen - BSP-Baume

HLR/HSR

Scanline
Algorithmus

Area Subdivision
(Warnock)

» Backface Removal / Culling ‘

- Generic object precision algorithm

for (each object in the world)

determine those parts of the object whose view is unobstructed
by other parts of of it ar any other object

draw those parts in the appropriate color

/

R E 1

- Cost: (n— 1)+ (1 — 2. ..+1=r", (n: number of objects)

- Extents

* 1f the extents of the projections do not overalp, no comparisons need to be
made

-—I-!.,:

* 1f the extents overlap, more testing 1s needed

- Minmax testing: bounding each dimension seperately (minmax testing)

A

Ling
A :_-- i
Crin g “;r-:

"'?ﬂ'IHI |

-

* No D\’El']ﬂ]_l" it: Imax2<Zminl OU Tmax1<Imin2

Metode v prostoru slike (image precision methods)

- Use projected images of objects and are performed at the resolution of the dis-
play device

- Idea: visibility 1s determined pixel by pixel on the projection plane

COF

- Generic 1mage precision algorithm

for (each pixel in the image) {

determine the object closest to the viewer that is pierced by
the projector thraugh the pixel

draw the pixel in the appropriate calor

/

- Cost: np, (n: number of objects, p: number of pixels, p >> n), worstcase

Comparison between object and image precision algorithms

Image FPrecision Object Precision
performed at the resolution of the performed at the precision with
display device which each object 1s defined
if the size of the image changes, 1f the si1ze of the image changes,
visible-surface calculations have to visible-surface calculations do not
be repeated have to be repeated
subject to ahasing (jaggies) no aliasing problems

imitially written for raster devices initially wntten for vector devices

IzloCanje zadnjih ploskev (backface culling)

= Polygone, die der Anwender nicht sieht,
werden nicht dargstellt

= Wir unterscheiden zwei Methoden:

= Bildschirmkoordinaten
= Augkoordinaten

Blickrichtung
>

_

entfernbar

IzloCanje zadnjih ploskev (backface culling)

View plane _.-~"

eye

a)

F is back face if

(P —eye) dot m, >0

Skalarni produkt (pot Product)

d=vlw= iviwl.
=1

> [

L
Angle between Two Vectors COS(8) =b

=
f=

Sign and Perpendicularity

b b b
“perpendicular”
E orthogonal
2 2 normal
hecg=i bec=1{

bec=0

Normala na ravnino

a)

normal vector
to sidewall

LAy

normal vector
to front wall

Kako dobimo vektorje normal

a)

Flat Face:

m = (Vl _Vz) X(V:s _Vz)

v, /

Vectors nearly parallel, the cross
product will be very small, Polygon is not perfect planar
Numerical inaccuracies may result

Finding the Normal Vectors

Robust Method (Newell):

=
[N

S
<
I
L"Mi EME iIM;

(y = Ve (>)(Z Tz, ())
(Z _Znext(i))(xi + Xnext(i))

(X = Xnext(i))(yl- + ynext(i))

Tabela verteksov in ploskev (vertex and Face Table)

Each face lists vertex references

Shared vertices

Still no topology information

VERTEX TABLE
(x3,y3,23) (X5:Y5:ZS)

V, (Xl’yl’zl) FACE TABLE

V, (X25Y2’Zz) v, v, v,
(x3,y3,23) |:2 V3 V2 V4

Vs (X4,.Y4’Z4) F, V, V, V.

V4 (X5,.YS’ZS)

Vs

Podatkovne strukture

Mesh
numVerts Point3
pt o
X, Y, Z
norm numNormals o Vector3
dx, dy, dz
face ¢ Face Rl
numFaces
vert @) VertexID
nVerts
vertindex
normindex
a) b}
v numVerts 4] 119 |4
A -0 [0 |10
pt | «7 || D [0 [0 1
numMNorms 4 S0 |-110
770 [0 [-1
gl 57710 |0
numFaces 4 T3 313
face | <[5 [
. X / ; &
- 17o][al1] [o]2] [1]3
2ol [2]1][3]2] [3]3
alol (11 (2]2] [o]3

IzloCanje zadnjih ploskev (backface culling)

View plane _.-~"

eye

a)

F is back face if

(P —eye) dot m, >0

Algoritem

aj b)
numVerts
pt

numMNorms

= -\4:-
=
D] | S| =

L
]

norm

void Mesh :: draw ()

{

numFaces

\-D-

face

for (int f = 0; f < numFaces; f++) e | i
{ 3
giBegin (GL_POLYGON)

for (int v = 0; v < face[f].nVerts; v++)

[P e

] e}
=

B'—-"'—-‘_‘___.- ted mJ_lD o £=1 =1
el

Nl\-"l\-*"““*-‘ (o I = = N B =1 = =

=
o

{
int iv = face[f].vert[v].vertindex;
glVertex3f(pt[iv].x, pt[iv].y, pt[iv].z);
}
glEnd();

a) b)
v numVerts 4 L e
5 L0 [0 [1 D
pt: | [E (]2
2 numMNorms 4 (57010
. FATTI O [O |1
void Mesh :: draw () nom | Iem 1510
mumFaces 4 33373
{ 1 face | «7] ,,-/, '(r -tl‘
i Al)] ﬂ ““‘“rl.x
for (int f = 0; f < numFaces; f++) z TR (RS
2[0 1| [alz] [A]3
{ 30| [11] [212] [0]3

If (isBackFace (f, eye)) continue;
glBegin (GL_POLYGON)

for (int v = 0; v < face[f].nVerts; v++)

{
int iv = face[f].vert[v].vertindex;
glVertex3f(pt[iv].x, pt[ivl.y, pt[iv].z);
}
glEnd();

Z - buffer Algorithm

Advantages
* easy to implement

* no presorting

no object-object comparisons
* saves rendering time

* can be hardware implemented
Disadvantages

* memory requirements

* time wasted overwriting pixels

Z-buffer algorithm

* The z-buffer or depth-buffer is one of the simplest visible-
surface algorithms.

* Z-buffering is an image-space algorithm, an involves the
use of a (surprisingly) z-buffer, to store the depth, or z-
value of each pixel.

* All of the elements of the z-buffer are initially set to be
'very far away.' Whenever a pixel colour is to be changed
the depth of this new colour is compared to the current
depth in the z-buffer. If this colour is 'closer' than the
previous colour the pixel is given the new colour, and the
z-buffer entry for that pixel is updated as well. Otherwise
the pixel retains the old colour, and the z-buffer retains
its old value.

Z-buffer algorithm

* Pseudo code...

for each polygon for each pixel p in the polygon's projection
{

pz = polygon's normalized z-value at (x, y);

//z ranges from -1 to O

if (pz > zBuffer[x, y]) // closer to the camera
{ zBuffer[x, y] = pz;
framebuffer[x, y] = colour of pixel p;

}

Z-Buffer Algorithm

for(each pixel(i, j)) // clear Z-buffer and frame buffer
{

z_buffer[ij[j] =far plane z;
color_buffer[i][j] = background color;
}

for(each face A)
for(each pixel(i, j) in the projection of A)
{
Compute depth z and color ¢ of A at (i,j);
if(z > z_buffer[i][j])
{
7_buffer[i][j] = z;
color_buffer[i][j] = c,

Uporaba prednostnih seznamov

Idee: Reihenfolge der Polygone entsprechend
ihrer Tiefe sortieren, sodass die Darstellung
geordnet durchgefuhrt werden kann.

Verfahren:
= Depth-Sort Algorithmus (Painters Algorithm)
= BSP-Algorithmus

Algoritem razvrsScanja po globini (depth sort

Idee: Polygone werden von hinten nach vorne sortiert und dann
in dieser Reihenfolge gezeichnet.

1. Vorsortierung aller Polygone bzgl. ihrer Entfernung vom
Bildschirm (z-Wert)

2. Auflosen aller UnregelmaBigkeiten, wenn nétig Polygone
zerschneiden.

3. Rasterisierung aller Polgone (von hinten nach vorne)

Depth-sort algorithm

* a.k.a. The Painter's Algorithm

* The idea here is to go back to front drawing all the
objects into the frame buffer with nearer objects being
drawn over top of objects that are further away.

* Simple algorithm:
— Sort all polygons based on their farthest z coordinate
— Resolve ambiguities
— draw the polygons in order from back to front

* This algorithm would be very simple if the z coordinates
of the polygons were guaranteed never to overlap.
Unfortunately that is usually not the case, which means
that step 2 can be somewhat complex.

Depth-sort algorithm

* First must determine z-extent for each

polygon

2 A

-

y4

max

z-extent

= X

Depth-sort algorithm

* Ambiguities arise when the z-extents of two
surfaces overlap.

Problem Cases: Cyclic and Intersecting Objects

Depth-sort algorithm

* Any polygons whose z extents overlap must be
tested against each other.

* We start with the furthest polygon and call it P.
Polygon P must be compared with every
polygon Q whose z extent overlaps P's z extent.
5 comparisons are made. If any comparison Is
true then P can be written before Q. If at least
one comparison is true for each of the Qs then P
Is drawn and the next polygon from the back is
chosen as the new P.

Depth-sort algorithm

do P and Q's x-extents not overlap.

do P and Q's y-extents not overlap.

IS P entirely on the opposite side of Q's plane from the viewport.
IS Q entirely on the same side of P's plane as the viewport.

do the projections of P and Q onto the (x,y) plane not overlap.

abkowbhPE

* If all 5 tests fail we quickly check to see if switching P
and Q will work. Tests 1, 2, and 5 do not differentiate
between P and Q but 3 and 4 do. So we rewrite 3 and 4

3. is Q entirely on the opposite side of P's plane from the viewport.
4’. is P entirely on the same side of Q's plane as the viewport.

Depth-sort algorithm

X - extents not overlap?

Q
~N I
. N\ / if they do, test falls
‘ |

Depth-sort algorithm

y - extents not overlap?

Q
~N I
. N\ / if they do, test falls
‘ |

Depth-sort algorithm

IS P entirely on the opposite side of Q's plane from
the viewport.

3

z A

P
‘ | Test is true...

= X

Depth-sort algorithm

IS Q entirely on the same side of P's plane as
the viewport.

z A /
Q Test IS true...
P

= X

Depth-sort algorithm

do the projections of P and Q onto the (X,y)
plane not overlap.

hole in P

¢ >X

Test is true...

Depth-sort algorithm

e |f all tests fall...

— ... then reverse P and Q In the list of surfaces
sorted by Z

—set a flag to say that the test has been
performed once.

—If the tests fall a second time, then it Is
necessary to split the surfaces and repeat the
algorithm on the 4 surfaces

Depth-sort algorithm

* End up drawing Q2,P1,P2,01

z A

BSP Trees

* Idea

Preprocess the relative depth information of the scene in a
tree for later display

* Observation
The polygons can be painted correctly if for each polygon F:

— Polygons on the other side of F from the viewer are
painted before F

— Polygons on the same side of F as the viewer are painted
after F

Building a BSP Tree

Typedef struct {

polygon root;

BSP_tree *backChild, *frontChild;
} BSP_tree;

BSP_tree *makeBSP(polygon *list)
{
if(list = NULL) return NULL;

Choose polygon F from list;
Split all polygons in list according to F;

BSP_tree* node = new BSP_tree;

node->root = F;

node->backChild = makeBSP(polygons on front side of F);
node->frontChild = makeBSP(polygons on back side of F);
return node;

Building a BSP Tree (2D)

~5b
P4

/F ba

Building a BSP Tree (2D)

Building a BSP Tree (2D)

Displaving a BSP Tree

Display order: 4, 5b, 3, 5a,2, 1 (only 3 is front
facing)

Displaying a BSP Tree

void displayBSP (BSP_tree *T)
{
if (T !'= NULL) {
if (viewer is in front of T->root) { // display backChild first
displayBSP (T->backChild);
displayPolygon (T->root);
displayBSP (T->frontChild);
}
else { // display frontChild first
displayBSP (T->frontChild);
displayPolygon (T->root);
displayBSP (T->backChild);

BSP Trees: Analysis

* Advantages
— Efficient
— View-independent
— Easy transparency and antialiasing

* Disadvantages
— Tree is hard to balance
— Not efficient for small polygons

Warnockov algoritem

Recursively subdivide the sereen until only one triangle is visible inside each rectangle.

~
=

tad

4.
4

[

[
fe
]
[]

Warnock PseudoCode

void warnock(rectangle r)
{
if ris a pixel
if r covers no tnangles, color with background color
else color according to nearest triangle
if ris a non—pixel rectangle
if r contains only background, color with background color
if r is completely contained in a triangle
and that triangle is nearer than any other overlapping triangles
then color according to the nearest triangle.
else
subdivide into four rectangles: r1, r2, r3, r4

warnock(rl); warnock(r2); warnock(r3); warnock(r4);

Two Main Problems

1. Testing for overlap and/or containment between rectangle and triangles
(a) Intersection of bounding box of triangle with rectangle.
(b) Intersection of triangle edges with rectangle.
(¢) Containment of rectangle mside trangle or viee versa.

2. Determining the nearest enclosing triangle

(a) Vertex test.

It 15 ok to miss some termination cases—it they can be canght durmg subsexquent subdivisions.

Overlap and Containment (1): Bounding Box Test

min wmax

----------- Fymin

There is 1o overlap it

rmar <L or rmin>71 or ymar <b or ymin >1

Overlap and Containment (2): Edge Intersection Tests

(xlayl)

(x2.v2)

Compurte

Ith <y < &, then the edge from (1, Y1) to (Lo,) itersects the left side.

Overlap and Containment (3): Containment Tests

<

Case | Case 2 Case 3

It onie vertex of riangle s inside rectangle: Case 2.
It onie vertex of rectangle is inside triangle: Case 3.
Else: Case 1.

Based on these tests, we can classify every triangle as either disjoint. intersecting (inchuwdiig

tully inside). or enclosing. It all triangles are disjont. we fill with backgronnd color and returm.

Nearest Enclosing Triangle

I there are any enclosing triangles, then we must check to see it one of them hides all of the

other mtersecting and enclosing triangles. At each vertest of the rectangle, compute the =z

depth of the plane of each overlapping triangle.

Z £ ra
'} |

Triangle 1

Triangle 2

_|
Z
=

i
=]

[

- L

b X

}
]

rectangle rectangle

Case | Case 2

rectangle

Case 3

If one triangle is nearest at all four vertexes (Case 1), we fill the rectangle with its color and

TETUTTL.

Otherwise, we subdivide and process the tour subrectangles recursively. Note that we miss an

opportunity in Case 3.

Efficient Classification of Triangles

Two kev facts to exploit:
e If a triangle is disjoint from a rectangle, then it is disjoint from all
subdivisions of that rectangle.

e If a triangle encloses a rectangle, then it encloses all subdivisions of that
rectangle.

Mamtam three hnked hsts:

dlist All triangles known to be disjoint with the eirrent rectangle.
slist All mangles known to enclose the current rectangle (“suwrround™ List).

ilist All other triangles (they are all potentially mtersecting).

void warnock(rectangle r, triangle_t+ dlist, triangle_tx slist, triangle_t= ilist)
For each triangle on ilist
perform overlap tests and move to dlist or slist if appropriate
If slist is empty
If ilist is empty

Paint background color

Restore ilist and return

Else
If there i5 a2 member of slist closer than all other elements

of slist and ilist
Paint with its color.
Restore ilist and return
Subdivide r into r1, r2, £3, rd
warnock(rl,dlist,slist,ilist); warnock(r2,dlist,slist,ilist);
warnock(r3,dlist,slist,ilist); warnock(r4,dlist,slist,ilist);

Restore ilist and return.

A Fast Way to Restore ilist

ilist

l

glist

ghaold

dlist

l

dhold

N

Introduce pomters shold and dhold.

r=

ilist

[

zlist

.
f———

shold

L

4 il

Distiibute the rectangles from 11list onto dlist and slist:

.

l dlist

dhold

-|7T_

] i

rz

Demonstracija — primerjava metod

	Zakrite ploskve
	Problem outline
	Approaches
	Object space
	Image space
	Algoritmi določanja vidnosti
	Postopki ugotavljanja vidnosti
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Izločanje zadnjih ploskev (backface culling)
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Z - buffer Algorithm
	Z-buffer algorithm
	Slide 28
	Z-Buffer Algorithm
	Uporaba prednostnih seznamov
	Algoritem razvrščanja po globini (depth sort)
	Depth-sort algorithm
	Slide 33
	Slide 34
	Problem Cases: Cyclic and Intersecting Objects
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	BSP Trees
	Building a BSP Tree
	Building a BSP Tree (2D)
	Slide 48
	Slide 49
	Displaying a BSP Tree
	Slide 51
	BSP Trees: Analysis
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Demonstracija – primerjava metod

