

Zakrite ploskve

Problem outline

• Given a set of 3D objects and a viewing
specification, we wish to determine which
lines or surfaces are visible, so that we do
not needlessly calculate and draw surfces,
which will not ultimately be seen by the
viewer, or which might confuse the viewer.

Approaches

• There are 2 fundamental approaches to
the problem.

– Object space
– Image space

Object space

• Object space algorithms do their work on the objects
themselves before they are converted to pixels in the
frame buffer. The resolution of the display device is
irrelevant here as this calculation is done at the
mathematical level of the objects

• Pseudo code…
– for each object a in the scene

• determine which parts of object a are visible
• draw these parts in the appropriate colour

• Involves comparing the polygons in object a to other
polygons in a and to polygons in every other object in the
scene.

Image space

• Image space algorithms do their work as the
objects are being converted to pixels in the
frame buffer. The resolution of the display device
is important here as this is done on a pixel by
pixel basis.

• Pseudo code…
– for each pixel in the frame buffer

• determine which polygon is closest to the
viewer at that pixel location

• colour the pixel with the colour of that
polygon at that location

Algoritmi določanja vidnosti

• Object space
– Back-face culling

• Image space
– z-buffer algorithm

• Hybrid
– Depth-sort

Postopki ugotavljanja vidnosti

Metode v prostoru slike (image precision methods)

Izločanje zadnjih ploskev (backface culling)

() 0>− FmdoteyeP

View plane

eye

V

U

-N

F is F is back faceback face if if

Izločanje zadnjih ploskev (backface culling)

Skalarni produkt (Dot Product)

Angle between Two Vectors

∑
=

=⋅=
n

i
iiwvwvd

1

Sign and Perpendicularity

()
∧∧

⋅= cbθcos

“perpendicular”
orthogonal
normal

Normala na ravnino

Kako dobimo vektorje normal

Flat Face:1V

2V 3V
m

() ()2321 VVVVm −×−=

Two Problems:
1V

2V

3V

Vectors nearly parallel, the cross
product will be very small,
Numerical inaccuracies may result

Polygon is not perfect planar

Finding the Normal Vectors

Robust Method (Newell):
1V

2V 3V
m

()() ()()

()() ()()

()() ()()∑

∑

∑

−

=

−

=

−

=

+−=

+−=

+−=

1

0

1

0

1

0

N

i
inextiinextiz

N

i
inextiinextiy

N

i
inextiinextix

yyxxm

xxzzm

zzyym

Tabela verteksov in ploskev (Vertex and Face Table)

Shared vertices

Still no topology information

Each face lists vertex references

()111 ,, zyx

()222 ,, zyx

()333 ,, zyx

()444 ,, zyx

()555 ,, zyx

F1

F2

F3

VERTEX TABLE

V1

V2

V3

V4

V5

()111 ,, zyx

()222 ,, zyx

()333 ,, zyx

()444 ,, zyx

()555 ,, zyx

FACE TABLE

V1 V2 V3

V3 V2 V4

V3 V4 V5

F1

F2

F2

Mesh

pt

norm

face

Point3

x, y, z
Vector3

dx, dy, dz

VertexID

vertIndex
normIndex

numVerts

numNormals

numFaces

nVerts

Face

vert

Podatkovne strukture

() 0>− FmdoteyeP

View plane

eye

V

U

-N

F is F is back faceback face if if

Izločanje zadnjih ploskev (backface culling)

void Mesh :: draw ()

{

for (int f = 0; f < numFaces; f++)

{

glBegin (GL_POLYGON)

for (int v = 0; v < face[f].nVerts; v++)

{

int iv = face[f].vert[v].vertIndex;

glVertex3f(pt[iv].x, pt[iv].y, pt[iv].z);

}

glEnd();

}

}

Algoritem

void Mesh :: draw ()

{

for (int f = 0; f < numFaces; f++)

{

If (isBackFace (f, eye)) continue;

glBegin (GL_POLYGON)

for (int v = 0; v < face[f].nVerts; v++)

{

int iv = face[f].vert[v].vertIndex;

glVertex3f(pt[iv].x, pt[iv].y, pt[iv].z);

}

glEnd();

}

}

Z - buffer Algorithm

Advantages

• easy to implement

• no presorting

• no objectobject comparisons

• saves rendering time

• can be hardware implemented

Disadvantages

• memory requirements

• time wasted overwriting pixels

Z-buffer algorithm

• The z-buffer or depth-buffer is one of the simplest visible-
surface algorithms.

• Z-buffering is an image-space algorithm, an involves the
use of a (surprisingly) z-buffer, to store the depth, or z-
value of each pixel.

• All of the elements of the z-buffer are initially set to be
'very far away.' Whenever a pixel colour is to be changed
the depth of this new colour is compared to the current
depth in the z-buffer. If this colour is 'closer' than the
previous colour the pixel is given the new colour, and the
z-buffer entry for that pixel is updated as well. Otherwise
the pixel retains the old colour, and the z-buffer retains
its old value.

Z-buffer algorithm

• Pseudo code…
for each polygon for each pixel p in the polygon's projection

{

pz = polygon's normalized z-value at (x, y);

//z ranges from -1 to 0

if (pz > zBuffer[x, y]) // closer to the camera
{ zBuffer[x, y] = pz;

framebuffer[x, y] = colour of pixel p;

}

}

Z-Buffer Algorithm

for(each pixel(i, j)) // clear Zbuffer and frame buffer
{

z_buffer[i][j] = far_plane_z;
color_buffer[i][j] = background_color;

}

for(each face A)
for(each pixel(i, j) in the projection of A)
{

Compute depth z and color c of A at (i,j);
if(z > z_buffer[i][j])
{

 z_buffer[i][j] = z;
 color_buffer[i][j] = c;
}

}

Uporaba prednostnih seznamov

Algoritem razvrščanja po globini (depth sort)

Depth-sort algorithm

• a.k.a. The Painter's Algorithm
• The idea here is to go back to front drawing all the

objects into the frame buffer with nearer objects being
drawn over top of objects that are further away.

• Simple algorithm:
– Sort all polygons based on their farthest z coordinate
– Resolve ambiguities
– draw the polygons in order from back to front

• This algorithm would be very simple if the z coordinates
of the polygons were guaranteed never to overlap.
Unfortunately that is usually not the case, which means
that step 2 can be somewhat complex.

Depth-sort algorithm

• First must determine z-extent for each
polygon

z-extent

z
max

z

x

Depth-sort algorithm

• Ambiguities arise when the z-extents of two
surfaces overlap.

z

x

surface 1

surface 2

 Problem Cases: Cyclic and Intersecting Objects

Depth-sort algorithm

• Any polygons whose z extents overlap must be
tested against each other.

• We start with the furthest polygon and call it P.
Polygon P must be compared with every
polygon Q whose z extent overlaps P's z extent.
5 comparisons are made. If any comparison is
true then P can be written before Q. If at least
one comparison is true for each of the Qs then P
is drawn and the next polygon from the back is
chosen as the new P.

Depth-sort algorithm

1. do P and Q's x-extents not overlap.
2. do P and Q's y-extents not overlap.
3. is P entirely on the opposite side of Q's plane from the viewport.
4. is Q entirely on the same side of P's plane as the viewport.
5. do the projections of P and Q onto the (x,y) plane not overlap.

• If all 5 tests fail we quickly check to see if switching P
and Q will work. Tests 1, 2, and 5 do not differentiate
between P and Q but 3 and 4 do. So we rewrite 3 and 4

3’. is Q entirely on the opposite side of P's plane from the viewport.
4’. is P entirely on the same side of Q's plane as the viewport.

Depth-sort algorithm

z

x

P

Q
if they do, test fails

x - extents not overlap?

Depth-sort algorithm

z

y

P

Q
if they do, test fails

y - extents not overlap?

Depth-sort algorithm

is P entirely on the opposite side of Q's plane from
the viewport.

z

x

P

Q

Test is true…

Depth-sort algorithm

is Q entirely on the same side of P's plane as
the viewport.

z

x

P

Q
Test is true…

Depth-sort algorithm

do the projections of P and Q onto the (x,y)
plane not overlap.

z

x

P

Q

y

x

P
Q

hole in P

Test is true…

Depth-sort algorithm

• If all tests fail…

– … then reverse P and Q in the list of surfaces
sorted by Zmax

– set a flag to say that the test has been
performed once.

– If the tests fail a second time, then it is
necessary to split the surfaces and repeat the
algorithm on the 4 surfaces

Depth-sort algorithm

z

x

P
1Q2

P
2

Q
1

• End up drawing Q2,P1,P2,Q1

BSP Trees

• Idea

Preprocess the relative depth information of the scene in a
tree for later display

• Observation
The polygons can be painted correctly if for each polygon F:
– Polygons on the other side of F from the viewer are

painted before F
– Polygons on the same side of F as the viewer are painted

after F

Building a BSP Tree

Typedef struct {
polygon root;
BSP_tree *backChild, *frontChild;

} BSP_tree;

BSP_tree *makeBSP(polygon *list)
{

if(list = NULL) return NULL;

Choose polygon F from list;
Split all polygons in list according to F;

BSP_tree* node = new BSP_tree;
node>root = F;
node>backChild = makeBSP(polygons on front side of F);
node>frontChild = makeBSP(polygons on back side of F);
return node;

}

Building a BSP Tree (2D)

2

1
3

5a
5

5b

4

3

 1

 2

5a

 4

5b

Building a BSP Tree (2D)

2

1
3

5a
5

5b

4

3

 4

5b
15a

2

front back

front back

Building a BSP Tree (2D)

2

1
3

5a
5

5b

4

3

15a

2

front back

front back
4

5b

back

Displaying a BSP Tree

Display order: 4, 5b, 3, 5a, 2, 1 (only 3 is front
facing)

2

1
3

5a
5

5b

4

3

15a

2

front back

front back
4

5b

back

Displaying a BSP Tree

void displayBSP (BSP_tree *T)
{

if (T != NULL) {

if (viewer is in front of T->root) { // display backChild first

displayBSP (T->backChild);

displayPolygon (T->root);

displayBSP (T->frontChild);

}

else { // display frontChild first

displayBSP (T->frontChild);

displayPolygon (T->root);

displayBSP (T->backChild);

}
}

BSP Trees: Analysis

• Advantages
– Efficient
– View-independent

– Easy transparency and antialiasing

• Disadvantages
– Tree is hard to balance
– Not efficient for small polygons

Warnockov algoritem

Demonstracija – primerjava metod

	Zakrite ploskve
	Problem outline
	Approaches
	Object space
	Image space
	Algoritmi določanja vidnosti
	Postopki ugotavljanja vidnosti
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Izločanje zadnjih ploskev (backface culling)
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Z - buffer Algorithm
	Z-buffer algorithm
	Slide 28
	Z-Buffer Algorithm
	Uporaba prednostnih seznamov
	Algoritem razvrščanja po globini (depth sort)
	Depth-sort algorithm
	Slide 33
	Slide 34
	Problem Cases: Cyclic and Intersecting Objects
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	BSP Trees
	Building a BSP Tree
	Building a BSP Tree (2D)
	Slide 48
	Slide 49
	Displaying a BSP Tree
	Slide 51
	BSP Trees: Analysis
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Demonstracija – primerjava metod

