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Outline

Part I:

Motivation: Computer vision for cognitive assistants

Evolution of object representations (models)

Generic (category-based) versus exemplar-based

Object-centered versus viewer-centered

Shape-based, appearance-based

Global features, local features

Computer vision for cognitive assistants

MORPHA-Video (www.morpha.de)

Tasks

Objects
Object recognition
Object categorization
Object segmentation (notion of an object)
Pose estimation (understanding the layout) 
Object manipulation (affordances)

Actions
Action recognition/categorization/segmentation
Interaction

Places
Recognition/categorization of places
Understanding the spatial relations
Affordances (interaction with the environment)

Representation-learning-recognition

Representation-learning-recognition (three inseparable parts 
of visual perception)
Visual recognition seems to be an easy task for humans.

How does human brain learn and store visual 
information?
How is the recognition performed?

Psychology, psychophysics, neuroscience, computer  
(cognitive) vision;

Workshop on generic object recognition and 
categorization, CVPR 2004
Workshop on object categorization, ICCV 2007

• complex objects/scenes 

• intra-category variability

• varying pose (3D rotation, scale)

• cluttered background/foreground

• occlusions (noise)

• varying illumination

Complexity of recognition
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Intra-category variability

Women, Fire, and Dangerous Things by G. Lakoff
Prototypical versus exemplar models

ETH-80 database

Pose and intra-variability 

Pose/Shape:

A Physician Riding a Donkey, by 
Niko Pirosmanashvili

You Who Can’t Do Anything, by 
Francisco Goya

Illumination 

Yale Face Database

Illumination - Outdoor environment

Global visual consistency Global visual consistency

www.phys.uu.nl/~wwwpm/HumPerc/koenderink.html
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Global recognition preceeding local Components of a recognition system

Object representations
Feature extraction

How reliable/stable are the features?
How difficult is it to extract them?

Object database organization
Model matching/indexing

Visual cues - Intrinsic properties

Visual cues
Contours
Color
Texture
Shading
Depth (Stereo)

Intrinsic properties 
Shape
Reflectance properties
Illumination

Representations

Prototypical models (abstract descriptions)
Exemplar models (e.g., 2D or 3D templates, exact geometry)

Object centered approaches (a single 3D model)
Compact, efficient, but hard to extract from the data
Comparing 2D to 3D (viewpoint invariant features)

Viewer centered approaches (reduces to 2D)
Easy to extract from the data, but complexity!

Simple versus complex features (Gestalt)
Power of complex indexing features versus
difficult recovery from images

Evolution of object models

Model             1970s                          1980s          1990s - 2006

Image 

High-level 
shape models

Idealized images, 
textureless, 
simple, blocks

Midlevel shape 
models, 
polyhedra, CAD

More complex 
objects, well-
defined structure Low-level image-

based appearance 
models

Most complex objects, 
full texture

Adapted from Y. Keselman and S. Dickinson, Generic model abstraction from examples, PAMI 2005

Object-centered, volumetric models

Generalized cylinders
Sizes, shapes, positions, orientations

Considerable variations within a class
Examples:

All coffee mugs
Hierarchically defined models (weak constrains to exemplars)
Different levels of abstraction
Major drawback: recovery of these high level models from 
images

Brooks’s ACRONYM system [1983]
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ACRONYM (Brooks & Binford, 1981) Generalized Cylinders

(Nevatia & Binford, 1973)

Structural Description in Terms of Volumetric Primitives

From image to 3-D description

Grouping
(generic properties)

Grouping
(generic properties)

Grouping
(properties of GCs)

Grouping
(properties of GCs)

Grouping
(object level)
Grouping

(object level)

Image Edges and corners

Curves and junctions

Patches, part 
hypotheses

3D parts and 
connectivity graph

G. Medioni, Generic shape learning and recognition, Workshop on Generic Object Recognition and Categorization (CVPR 2004)

Geons, superquadrics

A restricted set of generalized cylinders
Geons (Biederman; human vision)
Superquadrics (Pentland; computer vision)

Recovery from image data has met with very little success
Grouping and abstraction is needed
Top-down and bottom-up

Segmentation and modeling of range images

A. Leonardis, A. Jaklic, and F. Solina, "Superquadrics for segmentation and modeling range 
data", IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, pages 1289-
1295, 1997. 

Interpretation trees

Given 
The list of feature descriptors from a given object model
The list of feature descriptors detected in the image
A list of (geometric) constraints that model features must 
satisfy

Find a mapping between model 
features and image features such that
the constraints satisfied by the model
features are satisfied by the
corresponding image features.
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Evolution of object models

Model             1970s                          1980s          1990s - 2006

Image 

High-level 
shape models

Idealized images, 
textureless, 
simple, blocks

Midlevel shape 
models, 
polyhedra, CAD

More complex 
objects, well-
defined structure Low-level image-

based appearance 
models

Most complex objects, 
full texture

Adapted from Y. Keselman and S. Dickinson, Generic model abstraction from examples, PAMI 2005

Object-centered, feature-based

Correspondence between 2D features in images and 3D 
features in models

Properties
Viewpoint invariance
Locality
Ease of recovery

Lines (not only due to shape but also reflectance and 
illumination)
Corners (triplets of corners)

Huttenlocher & Ullman (1987) Object-centered, using perceptual groups

More discriminative features (to reduce a search space)
Gestalt principles

Parallelism
Collinearity
Proximity
Symmetry

Example: David Lowe’s approach
Still polyhedral objects
Still relaying on one-to-one correspondence (exemplar-
based approach)
Faster indexing, more complex detection 

Object-centered, using perceptual groups

3D object recognition with multiple 2D views
Extract feature groupings
Indexing 3D object from 2D images
Efficient search to validate matches

Black lines indicate feature
groupings, white lines indicate
possible matches (Beis, Lowe 1999)

3-D Model-Based Approach

Calibration/pose estimation problem (Lowe 1991)

Issues:
Model construction, indexing 
Class generalization
Occlusion, articulation

Model           Alignment
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Formal geometry is nearly intractable
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(Ponce & Kriegman, 1990)

Evolution of object models

Model             1970s                          1980s          1990s - 2006

Image 

High-level 
shape models

Idealized images, 
textureless, 
simple, blocks

Midlevel shape 
models, 
polyhedra, CAD

More complex 
objects, well-
defined structure Low-level image-

based appearance 
models

Most complex objects, 
full texture

Adapted from Y. Keselman and S. Dickinson, Generic model abstraction from examples, PAMI 2005

Object-centered versus viewer-centered

scene training
images

input 
image

3D 
reconstruction

learning

matching

matching

Viewer-centered, global appearance-based

Encompass combined effects of:
shape,
reflectance properties,
pose in the scene,
illumination conditions.

Acquired through an automatic learning phase

Appearance-based approaches

Objects are represented by a large number of views:

Data acquisition

COIL Database

Subspace methods

•• Images as points in high dimensional spacesImages as points in high dimensional spaces
•• A A set of images occupies a small subspaceset of images occupies a small subspace
•• Characterization of the subspaceCharacterization of the subspace

… … …

Set of imagesSet of images Basis imagesBasis images RepresentationRepresentation

≈ ..
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Object recognition and pose estimation

An An objectobject is is representedrepresented as as 
a a manifoldmanifold in in thethe principalprincipal subspacesubspace..

Object recognition and pose estimation

-10
-5

0
5

10

-10

-5

0
5

10
-6

-4

-2

0

2

-10
-5

0
5

10

-10

-5

0
5

10
-6

-4

-2

0

2

RecognitionRecognition::

Pose Pose estimationestimation::

newnew image:image:

Shortcomings of standard PCA
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RecognitionRecognition::

OccludedOccluded
newnew image:image:

•• PCA PCA coefficientscoefficients are are calculatedcalculated usingusing thethe standard standard projectionprojection ofof
thethe image image ontoonto thethe principalprincipal vectorsvectors

•• allall pixelspixels are used are used 
•• inherentlyinherently nonnon--robustrobust!!

Limitations and extensions

Suitable for object exemplars but not for object categories or 
prototypes

Extensions
Scale invariance
Coping with occlusions
Illumination invariance
Incremental and robust learning

Mobile Robot Localisation
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On-line learning

Application on a mobile robot
On-line learning
Odometry, GPS

Path (GPS) in XY planePath (GPS) in XY plane
First First 6 6 basis vectorsbasis vectors

Eigenspace

Built incrementally

Subspace (first three dimensions)Subspace (first three dimensions)

Subspace methods

Subspace methodsSubspace methods

ReconstructiveReconstructive DiscriminativeDiscriminative

PCA, ICA, NMFPCA, ICA, NMF LDA, SVM, CCALDA, SVM, CCA

=       +a=       +a11 +a+a22 +a+a3          3          ++ …… Classification, Classification, 
regressionregression

Reconstructive
Enable (partial) reconstruction of 
input images (hallucinations).
More general, not specific task-
dependent.
Enable two way processing (feedback
loop)

Discriminative
Store only information neccessary 
for a specific task.
More specialized, specific task-
dependent.
Do not enable (partial) 
reconstruction.

Internal representations

“The reason for trying to recover the low-dimensional 
manifold in which the data live, instead of constructing a 
decision surface for a given classification problem involving 
these data, has to do with transfer of learning or expertise 
across tasks. The hyperplane constructed may be easy to 
learn, may afford good generalization to new examples of 
the same problem, however, it is useless for generalization of 
expertise to different sets of labels for the same data.” (S. 
Edelman) 

“A characterization of the (class-conditional) probability 
density of the data is much more informative and potentially 
useful than a characterization of the decision surface for a 
given task.” (G. Hinton)

Viewer-centered, local appearance-based

Local photometric features
Distinctive features
Robust to occlusion and clutter
Scale and affine invariance

Viewer-centered, local appearance-based

Region detectors:
Difference of Gaussian (DOG)
Laplacian
Harris-Affine & Hessian Affine: K. Mikolajczyk and C. Schmid, Scale and 
affine invariant interest point detectors. In IJCV 1(60):63-86, 2004. 
MSER: J.Matas, O. Chum, M. Urban, and T. Pajdla, Robust wide baseline 
stereo from maximally stable extremal regions. In BMVC p. 384-393, 
2002. 
IBR & EBR: T.Tuytelaars and L. Van Gool, Matching widely separated 
views based on affine invariant regions. In IJCV 1(59):61-85, 2004.
Salient regions: T. Kadir, A. Zisserman, and M. Brady, An affine 
invariant salient region detector. In ECCV p. 404-416, 2004.

Region descriptor
Differential invariants
Steerable filters
Moments
SIFT: D. Lowe, Distinctive image features from scale invariant 
keypoints. In IJCV 2(60):91-110, 2004.
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Local invariant features: SIFT (Lowe, IJCV 2004)
Scale, rotation invariant key-points
Select and match key-points

Viewer-centered, local appearance-based

Local invariant features: SIFT (Lowe, IJCV 2004)
Scale, rotation invariant key-points
Select and match key-points

Viewer-centered, local appearance-based

Example Example

Viewer-centered, local appearance-based

Trainable visual models for object class recognition
(categorisation)
Objectives

Recognition (but not perfect segmentation)
(Semi) unsupervised learning

Main issues:
• Parts

• appearance, shape
• Structure

• model (e.g. implicit or explicit)
• Model learning

• from training data
Model fitting (recognition)

• complexity

The “templates and springs” model

Probabilistic relaxation algorithms (Rosenfeld et al., 1976)

(Fischler & Elschlager, 1973)
Ballard & Brown (1980, Fig. 11.5). Courtesy 
Bob Fisher and Ballard & Brown on-line.
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Various approaches

Models that learn parts, then add structure
Weber, Welling & Perona, Leibe & Schiele, Agarwal & 
Roth, Borenstein & Ullman

Models for which the structure is primary
Felzenszwalb & Huttenlocher, Ramanan & Forsyth

Models that learn parts and structure simultaneously
Fergus, Perona & Zisserman

Learn part models, then add structure

Recognize class instances under image translation
• Implicit structure model
• No inter-part articulation
• Only single visual aspect

Extend to image scale change and rotation by exhaustive 
search over scale and orientation

Learn part models, then add structure

Collect patches from whole training set

• Appearance codebook

…

Leibe & Schiele, 2004

Voting Space
(continuous)

Categorisation & segmentation Leibe & Schiele

Interest Points Matched Codebook 
Entries

Probabilistic 
Voting

Backprojection
of Maximum

Refined Hypothesis
(uniform sampling)

Backprojected
Hypothesis

Segmentation

Models for which structure model is primary

New ideas
• Explicit structure model
• Articulated structure

Detect and localize multi-part objects at arbitrary locations in 
a scene
– Generic object models such as person
– Allow for articulated objects
– Combine 2D geometry and appearance
– Provide efficient and practical algorithms

Felzenszwalb and Huttenlocher

Matching pictorial structures

Simultaneous use of appearance and spatial information
Minimize an energy (or cost) function that reflects both
– Appearance: how well each part matches at given location
– Configuration: degree to which model is deformed in 

placing the parts at chosen locations

Felzenszwalb and Huttenlocher, 2000
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Parts & structure modeled simultaneously

New ideas
• Explicit structure model – Joint Gaussian over all part 

positions
• Part detector determines position and scale
• Heterogeneous parts
• Simultaneous learning of parts and structure

Constellation model of Fergus, Perona & Zisserman 2003

Object classes

Motorbikes Airplanes

Evolution of object models

Model             1970s                          1980s          1990s - 2006

Image 

High-level 
shape models

Idealized images, 
textureless, 
simple, blocks

Midlevel shape 
models, 
polyhedra, CAD

More complex 
objects, well-
defined structure Low-level image-

based appearance 
models

Most complex objects, 
full texture

Adapted from Y. Keselman and S. Dickinson, Generic model abstraction from examples, PAMI 2005

Bridging the gap between
low-level image features and 
high-level abstract models

Hierarchical architecture

• HMAX

Riesenhuber and Poggio, Nature 1999
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Classification by feature hierarchies
Boris Epshtein, Shimon Ullman

Weizmann Institute of Science

Building a hierarchy of sub-fragments Classification by hierarchy

Examples & Results

Goal

Set of sub-
fragments

detected 
in:

Our method

Extracting informative 
fragments

Training set

Class Non-Class )|()();( YXHXHYXI −=

detected 
in:

Informative 
Fragment

1. Define training set for the fragment.

Fragment to be detected:

Detected in images:
Class Non-Class

“Almost detected”:

(detected with lowered 
threshold)

2. Extract the most informative sub-
fragments.

3. Apply the algorithm recursively to the sub-fragments.
Stopping rule:                                                  
When no information gain is achieved by splitting a fragment, keep it holistic.

4. Optimize receptive field (RF) sizes of the fragments.
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Improve recognition by using hierarchical features.

Single-level  method

Hierarchical features are better

Decomposition into sub-fragments 
increases tolerance to 
deformations and local illumination 
changes

Pool of fragments

Informative fragments

(Sali & Ullman, 2002)

Average MI increase: 56.1674% ± 35.9503% 

Conclusions
•Hierarchical features are more informative than integral features

•Positions and sizes of sub-features need to be chosen adaptively

•Size of Receptive Field need to be chosen adaptively

•Typical depth of hierarchy: 3-5 levels

•High-level fragments are class-specific

•Low-level fragments are shared between classes

Overview of the architecture

ArchitectureArchitecture

Summary: Evolution of object models

From prototypical models (class-based or generic models) to 
exemplar-based models (template-, appearance-based) to
prototypical constellations (trainable visual models for object
class recognition) to
hierarchical representations.

Human visual system
Retina:   Rods: 120 million (light sensitive – not color)

Cones: 6 million (color sensitive, high acuity)

Brain:   “V1-V2 complex”: Map for edges
V3: Map for form and local movement
V4: Map for colour
V5: Map for global motion 

Number of neurons: 1010-1011

Neuron fan-out: 103-104

Distributed local representations

M. Tanifuji, Nature 2001
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