
Virtualizacija 
operacijskih sistemov



Kaj je virtualizacija

•Single OS image per machine
•Software and hardware tightly coupled
•Running multiple applications on same machine
•Underutilized resources
•Inflexible infrastructure
•Hardware-independence of operating system and applications
•Virtual machines can be provisioned to any system
•Can manage OS and applications as a single unit by encapsulating them into virtual 
machine



Visoki stroški infrastrukture

– Maintenance
– Leases
– Networking

– Floor space

– Cooling
– Power
– Disaster Recovery



Heterogena okolja



Migracija strežnikov

• Too many servers for too little work

• Aging hardware reaching end of usable life 

• High infrastructure requirements
• Limited flexibility in shared environments

Reduce costs by consolidating services onto the fewest number of 
physical machines



Virtualization is “HOT”

• Microsoft acquires Connectix Corp.
• EMC acquires VMware
• Veritas acquires Ejascent 
• IBM, already a pioneer
• Sun working hard on it
• HP picking up

Virtualization is HOT!!!



Server 2008 in tehnologije virtualizacije



Virtualizacija in izzivi arhitekture



Zakaj torej virtualizacija?

• Server consolidation
• Application Consolidation
• Sandboxing
• Multiple execution environments
• Virtual hardware
• Debugging
• Software migration (Mobility)
• Appliance (software)
• Testing/Quality Assurance



Kaj je v resnici virtualizacija?

• Real vs. Virtual
– Similar essence, effect
– ”Formally” different

• A framework that combines or divides [computing] 
resources to present a transparent view of one or more 
environments
– Hardware/software partitioning (or aggregation)
– Partial or complete machine simulation
– Emulation (again, can be partial or complete) 
– Time-sharing (in fact, sharing in general)
– In general, can be M-to-N mapping (M “real” resources, N 

“virtual” resources)
– Examples: VM (M-N), Grid Computing (M-1) , Multitasking (1-N)



Problemi implementacije virtualnega 
stroja

• Only one “bare” machine interface
• Virtualizable Architecture

“A virtualizable architecture allows any instruction inspecting/modifying 
machine state to be trapped when executed in any but the most 
privileged mode” 

- Popek & Goldberg (1974)
• X86 is not virtualizable (Vanderpool??)

• Hard to optimize [from below]
– Unused memory pages
– Idle CPU

• Difficult to know what NOT to do
– Example: Page faults (VMM), System Calls (OS level)



HARDWARE

KERNEL

USER LEVEL LIBRARIES

APPLICATIONS

API Calls

System Calls

Instructions

User Space

Kernel Space

Stroji: večplastna arhitektura



Možni nivoji abstrakcije

• Instruction Set Architecture (ISA)
– Emulate the ISA in software

• Interprets, translates to host ISA (if required)
• Device abstractions implemented in software
• Inefficient

– Optimizations: Caching?  Code reorganization?
– Applications: Debugging, Teaching, multiple OS

• Hardware Abstraction Layer (HAL)
– Between “real machine” and “emulator” (maps to real hardware)
– Handling non-virtualizable architectures (scan, insert code?)
– Applications: Fast and usable, virtual hardware (in above too), 

consolidation, migration



Še o možnih nivojih abstrakcije

• Operating System Level
– Virtualized SysCall Interface (may be same)
– May or may not provide all the device abstractions
– Easy to manipulate (create, configure, destroy)

• Library (user-level API) Level
– Presents a different subsystem API to application
– Complex implementation, if kernel API is limited
– User-level device drivers

• Application (Programming Language) Level
– Virtual architecture (ISA, registers, memory, …)
– Platform-independence ( highly portable)
– Less control on the system (extremely high-level)



Značilnosti možnih abstrakcij

ISAISA HALHAL OSOS LibraryLibrary PLPL

PerformancePerformance ** ******** ******** ****** ****

FlexibilityFlexibility ******** ****** **** **** ****

Ease of ImplEase of Impl **** ** ****** **** ****

Degree ofDegree of
IsolationIsolation

****** ******** **** **** ******

(več zvezdic je bolje)



Virtualizacija na nivoju operacijskega 
sistema

Operating system-level virtualization is a server virtualization 
method where the kernel of an operating system allows for multiple 
isolated user-space instances, instead of just one. Such instances 
(often called containers, VEs, VPSs or jails) may look and feel like a 
real server, from the point of view of its owner. 

On Unix systems, this technology can be thought of as an advanced 
implementation of the standard chroot mechanism. In addition to 
isolation mechanisms, the kernel often provides resource 
management features to limit the impact of one container's activities 
on the other containers.

WEB



Ključna tehnologija: hipervizor

– A computing layer which allows multiple operating 
systems to run on a host computer at the same time. 

– Originally developed in the 1970s as part of the IBM 
S/360

– Many modern day variants from different developers



Primer aparaturne virtualizacije

• IBM pSeries Servers



Primer programske virtualizacije

• VMware Server (GSX)



Virtualizacija na nivoju ISA (Instruction set 
architecture)

• Technologies
– Emulation: Translates guest ISA to native ISA
– Emulates h/w specific IN/OUT instructions to mimic a 

device
– Translation Cache: Optimizes emulation by making 

use of similar recent instructions
– Code rearrangement
– Speculative scheduling (alias hardware)

• Issues
– Efficient Exception handling
– Self-modifying code



Primeri virtualizacije na nivoju ISA

• Bochs: Open source x86 emulator
– Emulates whole PC environment

• x86 processor and most of the hardware (VGA, disk, keyboard, mouse, …)
• Custom BIOS, emulation of power-up, reboot
• Host ISAs: x86, PowerPC, Alpha, Sun, and MIPS

• Crusoe (Transmeta)
– “Code morphing engine” – dynamic x86 emulator on VLIW processor
– 16 MB “translation cache”
– Shadow registers: Enables easy exception handling 

• QEMU:
– Full Implementation

• Multiple target ISAs: x86, ARM, PowerPC, Sparc
• Supports self-modifying code
• Full-software and simulated (using mmap()) MMU 

– User-space only: Useful for Cross-compilation and cross-debugging



Tehnike virtualizacije HAL (Hardware Abstraction 
Layer)

• Standalone vs. Hosted
– Drivers
– Host and VMM worlds
– I/O 

• Protection Rings
– Multilevel privilege domains

• Handling “silent” fails
– Scan code and 

insert/replace artificial traps
– Cache results to optimize



Arhitektura Vmware Workstation



VMware: I/O Virtualizacija

• VMM does not have access to I/O
• I/O in “host world”

– Low level I/O instructions (issued by guest OS) are merged to 
high-level I/O system calls

– VM Application executes I/O SysCalls
• VM Driver works as the communication link between 

VMM and VM Application
• World switch needs to “save” and “restore” machine 

state
• Additional techniques to increase efficiency



Primerjava aparaturne in programske 
virtualizacije

S/W based (x86)
• Requires ‘emulation’ of guest’s 

privileged code
– can be implemented very 

efficiently: Binary 
Translation (BT)

• Does not allow full 
virtualization
– sensitive unprivileged 

instructions (SxDT)
• Widely used today

– VMWare, VirtualPC

H/W virtualization
• VT-x (Intel IA32)
• SVM/Pacifica (AMD64)
• Does not require guest’s priv 

code emulation
• Should allow for full 

virtualization of x86/x64 guests
• Still not popular in commercial 

VMMs

 



Full VMMs vs. “Thin” hypervisors

Full VMMs
• Create full system abstraction 

and isolation for guest,
• Emulation of I/O devices

– Disks, network cards, 
graphics cards, BIOS…

• Trivial to detect,
• Usage: 

– server virtualization,
– malware analysis,
– Development systems 

“Thins hypervisors”
• Transparently control the 

target machine
• Based on hardware 

virtualization (SVM, VT-x)
• Isolation not a goal!

– native I/O access
– Shared address space with 

guest (sometimes)
• Very hard to detect
• Usage:

– stealth malware,
– Anti-DRM



Virtualizacija- druga plat medalje

Blue Pill:  virtualization based 
malware

WEB



Ideja modre tabletke

• Exploit AMD64 SVM extensions to move the 
operating system into the virtual machine (do it 
‘on-the-fly’)

• Provide thin hypervisor to control the OS
• Hypervisor is responsible for controlling 

“interesting” events inside gust OS



SVM

• SVM is a set of instructions which can be 
used to implement Secure Virtual Machines 
on AMD64

• MSR EFER register: bit 12 (SVME) controls 
weather SVM mode is enabled or not

• EFER.SVME must be set to 1 before 
execution of any SVM instruction.

• Reference:
– AMD64 Architecture Programmer’s Manual Vol. 

2: System Programming Rev 3.11
– http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf



Srce SVM: Instrukcija VMRUN 



Ideja modre tabletke (poenostavljeno)



BP installs itself ON THE FLY!

• The main idea behind BP is that it installs itself 
on the fly

• Thus, no modifications to BIOS, boot sector or 
system files are necessary

• BP, by default, does not survive system reboot



SubVirt Rootkit

• SubVirt has been created a few months before 
BP by researches at MS Research and 
University of Michigan

• SubVirt uses commercial (full) VMM (Virtual PC 
or VMWare) to run the original OS inside a VM…

WEB

WEB



Primerjava SubVirt in Blue Pill

• SV is permanent! SV has to 
take control before the original 
OS during the boot phase. SV 
can be detected off line.

• SV runs on x86, which does 
not allow for full virtualization 
(e.g. SxDT attack) 

• SV is based on a commercial 
VMM, which creates and 
emulates virtual hardware. 
This allows for easy detection

• Blue Pill can be installed on 
the fly – no reboot nor any 
modifications in BIOS or boot 
sectors are necessary. BP can 
not be detected off line.

• BP relies on AMD SVM 
technology which promises full 
virtualization

• BP uses ultra thin hypervisor 
and all the hardware is natively 
accessible without 
performance penalty



Matrix inside another Matrix

• What happens when you install Blue Pill inside a system 
which is already “bluepilled”?

• If nested virtualization is not handled correctly this will 
allow for trivial detection – all the detector would have to 
do was to try creating a test VM using a VMRUN 
instruction 

• Of course we can cheat the guest OS that the processor 
does not support SVM (because we control MSR 
registers from hypervisor), but this wouldn’t cheat more 
inquisitive users ;)

• So, we need to handle nested VMs…



Gnezdeni virtualni stroji



Blue Pill based malware

• Blue Pill is just a way of silently moving the 
running OS into Matrix on the fly

• BP technology can be exploited in many various 
ways in order to create stealth malware

• Basically ‘sky is the limit’ here :)
• On the next slides we present some simple 

example:



“Delusion Backdoor”

• Simple Blue Pill based network backdoor
• Uses two DB registers to hook:

– ReceiveNetBufferListsHandler
– SendNetBufferListsComplete

• Blue Pill takes care of:
– handling #DB exception (no need for IDT[1] hooking inside 

guest)
– protecting debug registers, so that guest can not realize they are 

used for hooking

• Not even a single byte is modified in the NDIS data 
structures nor code!

• Delusion comes with its own TCP/IP stack based on lwIP



Lastništvo ciljnega OS
• If we manage to run the target OS inside a hardware hypervisor 

controlled by ourselves…
• …we can bypass all the OS-provided prevention technologies

– kernel prevention
– anti-debugging

• It does not matter what OS is running inside
– we control the guest’s memory
– we control the guest’s I/O
– we can set hardware breakpoints



Odkrivanje modre tabletke in drugih hipervizorjev

• Timing analysis
• Exploiting implementation bugs (processor/system bugs)

• Using dedicated CPU instruction (not available now)



Časovna analiza

• Direct Timing Analysis
– measure execution time of an instruction which you 

know (or suspect) that is intercepted by the 
hypervisor…

– e.g. RDMSR EFER

• Indirect Timing Analysis
– measure execution time of some operation which is 

not intercepted by the hypervisor, but its timing is 
affected by the presence of a hypervisor

– e.g. page access time
• should work on VT-x, which does not use tagged TLB



Merjenje časa

• CPU Tic Counter
– RDTSC instruction
– resolution: number of processor cycles (super high!)
– very accurate, but trivial to cheat!

• Real Time Clock
– I/O with RTC device
– resolution: milliseconds (poor)
– relatively easy to cheat (I/O interceptions)

• External clock
– e.g. NTP protocol
– resolution: seconds (very poor)
– can not be cheated using generic approach – only attacks 

against specific implementation



Zanesljivost merjenja časa

• RDTSC
– RDTSC can be cheated via VMCB.TSC_OFFSET
– Also, RDTSC is “interceptable”

• Real Time Clock
– Can be cheated via I/O interception

• Network Time Protocol (NTP)
– Can be cheated via incoming packet manipulation

• Encrypted NTP
– Can not be generically cheated
– Implementation-Specific Attacks only



Dilatacija časa za gostujoči OS



Izkoriščanje hrošče implementacije

• We can expect that some (complex) CPU instructions to 
behave (sometimes) in some way differently when 
executed inside a hardware VM…

• In other words: CPU implementation bugs
• On the one hand they are nearly ideal solution…
• …but on the other hand: they are just bugs!

– means they will be fixed sometime
– might not affect all processors (e.g. only some revisions)
– should legitimate products rely on bugs?



Aparaturna rdeča tabletka?

• How about creating a new instruction – SVMCHECK:
mov rax, <password>
svmcheck
cmp rax, 0
jnz inside_vm

• Password should be different for every processor
• Password is necessary so that it would be impossible to write a 

generic program which would behave differently inside VM and on a 
native machine.

• Users would get the passwords on certificates when they buy a new 
processor or computer

• Password would have to be entered to the AV program during its 
installation.

• This could only by done by AMD/Intel! Let’s push on them!



Zaščita: blokiranje namestitve 
hipervizorjev

• Disable virtualization!
– “Do not plug your computer to the Internet” ;)

• Install “preventive” hypervisor first (right after the system 
boot)
– What policy used to allow/block installation of other (nested) 

hypervisor?



“Preventivni” hipervizor

• As a defense we can install preventive hypervisor that will not allow 
any other to be installed later, e.g. as a result of kernel bug 
exploitation…
– requires that we ensure secure boot process
– otherwise we cannot know whether our 

hypervisor is the “real” one or “nested”! (see 
earlier)

• Should be very lightweight!
• Policy?

– disallow any other hypervsiors to load later?
• Effectively disabling the virtualization technology (which has some 

legitimate usages after all)

– allow only “trusted” hypervsiors? 
• What is “trusted”?
• How can we ensure there are no bugs in “trusted” hypervisors?



Kako to implementirati

• Preventive Hypervisor can not share the address space 
with the guest

• Shadow Paging/Nested Paging is required to prevent 
tampering with hypervisor memory

• IOMMU should be used to prevent from accessing 
hypervisor’s physical memory via DMA
– currently the “poor man’s alternative” to IOMMU on AMD 

processors is External Access Protection (EAP) technology
• there does not seem to be any similar technology today on Intel VT-

x processors (i.e. similar to EAP)
– IOMMU is expected to be available in 2008 on most Intel and 

AMD processors though



Ne dovolimo zagona OS znotraj VM?

• Unclear whether it is possible 
• If possible, then for sure with the help of TPM/Bitlocker
• Subject of further research…

• Note that this is complementary to “preventive 
hypervisor” idea (or some detection) – as it does not 
protect against hypervisors installations via kernel exploit 
(Blue Pill)
– This is required only to prevent anti-DRM attacks



Hipervizorji kot varnostniki



Nadzor integritete na nivoju jedra

• Prone to all attacks from within kernel
• Kernel protection is very hard (impossible) in most OS!



Nadzor integritete znotraj hipervizorja

• Hypervisors can be much better controlled then kernel
– hypervisor can be very “thin” (easy verifiable)

• An integrity monitor inside hypervisor is not prone to direct attacks 
from kernel mode!



Legalna vprašanja?

• Such hypervisor would have to be installed during 
secured boot process
– otherwise we can not ensure that it’s not “nested”!

• Is it acceptable to install such a hypervisor by
– An A/V program
– DRM application?



Končni razmislek

• We cannot implement effective preventive hypervisors 
today, because of:
– the lack of IOMMU technology (DMA attacks)

– the lack of Nested Paging (Shadow Paging is too slow)

• Detection is very hard:
– Should not be based on CPU bugs!!!
– Need to use encrypted NTP for reliable timing

• In other words, we can not effectively fight virtualization 
based malware today!



Končno sporočilo

• Virtualization technology on Intel and AMD processors 
seems to be very immature as of today –
– It allows for effective malware implementation

– But does not allow for effective fighting with such a malware!

• Because of the lack of IOMMU and Nested Paging, 
current hardware virtualization does not seem to offer 
any significant benefit over traditional, software based 
virtualization, to create full VMMs (e.g. VMWare)


	Virtualizacija operacijskih sistemov
	Kaj je virtualizacija
	Visoki stroški infrastrukture
	Heterogena okolja
	Migracija strežnikov
	Virtualization is “HOT”
	Server 2008 in tehnologije virtualizacije
	Virtualizacija in izzivi arhitekture
	Zakaj torej virtualizacija?
	Kaj je v resnici virtualizacija?
	Problemi implementacije virtualnega stroja
	Stroji: večplastna arhitektura
	Možni nivoji abstrakcije
	Še o možnih nivojih abstrakcije
	Značilnosti možnih abstrakcij
	Virtualizacija na nivoju operacijskega sistema
	Ključna tehnologija: hipervizor
	Primer aparaturne virtualizacije
	Primer programske virtualizacije
	Virtualizacija na nivoju ISA (Instruction set architecture)
	Primeri virtualizacije na nivoju ISA
	Tehnike virtualizacije HAL (Hardware Abstraction Layer)
	Arhitektura Vmware Workstation
	VMware: I/O Virtualizacija
	Primerjava aparaturne in programske virtualizacije
	Full VMMs vs. “Thin” hypervisors
	Virtualizacija- druga plat medalje
	Ideja modre tabletke
	SVM
	Srce SVM: Instrukcija VMRUN
	Ideja modre tabletke (poenostavljeno)
	BP installs itself ON THE FLY!
	SubVirt Rootkit
	Primerjava SubVirt in Blue Pill
	Matrix inside another Matrix
	Gnezdeni virtualni stroji
	Blue Pill based malware
	“Delusion Backdoor”
	Lastništvo ciljnega OS
	Odkrivanje modre tabletke in drugih hipervizorjev
	Časovna analiza
	Merjenje časa
	Zanesljivost merjenja časa
	Dilatacija časa za gostujoči OS
	Izkoriščanje hrošče implementacije
	Aparaturna rdeča tabletka?
	Zaščita: blokiranje namestitve hipervizorjev
	“Preventivni” hipervizor
	Kako to implementirati
	Ne dovolimo zagona OS znotraj VM?
	Hipervizorji kot varnostniki
	Nadzor integritete na nivoju jedra
	Nadzor integritete znotraj hipervizorja
	Legalna vprašanja?
	Končni razmislek
	Končno sporočilo

