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Clustering
• basic notions: cluster, clustering, feasible clustering, criterion function,

dissimilarities, clustering as an optimization problem

• different (nonstandard) problems: assignment of students to classes,
regionalization; general criterion function; multicriteria problems.

• complexity results about the clustering problem – NP-hardness theo-
rems
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Basic notions
Let us start with the formal setting of the clustering problem. We shall use
the following notation:

X – unit
X – description of unit X

U – space of units
U – finite set of units, U ⊂ U
C – cluster, ∅ ⊂ C ⊆ U

C – clustering, C = {Ci}
Φ – set of feasible clusterings
P – criterion function,

P : Φ→ R+
0
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Clustering problem
With these notions we can express the clustering problem (Φ, P ) as follows:

Determine the clustering C? ∈ Φ for which

P (C?) = min
C∈Φ

P (C)

Since the set of units U is finite, the set of feasible clusterings is also
finite. Therefore the set Min(Φ, P ) of all solutions of the problem (optimal
clusterings) is not empty. (In theory) the set Min(Φ, P ) can be determined
by the complete search.

We shall denote the value of criterion function for an optimal clustering by
min(Φ, P ).
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&

$

%

Units
real or imaginary objects of analysis

WORLD UNITS DESCRIPTIONS

{X} ←→ X ←→ [X]

formalization operationalization

{ produced cars T } car T [ seats=4, max-speed= . . . ]

Usually an unit X is represented by a vector/description X ≡ [X] =

[x1, x2, ..., xm] from the set [U ] of all possible descriptions. xi = Vi(X)

is the value of the i-th of selected properties or variables on X. Variables
can be measured in different scales: nominal, ordinal, interval, rational,
absolute (Roberts, 1976).

There exist other kinds of descriptions of units: symbolic object (Bock,
Diday, 2000), list of keywords from a text, chemical formula, vertex in a
given graph, digital picture, . . .
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&

$

%

Clusterings
Generally the clusters of clustering C = {C1, C2, . . . , Ck} need not to be
pairwise disjoint; yet, the clustering theory and practice mainly deal with
clusterings which are the partitions of U

k⋃
i=1

Ci = U

i 6= j ⇒ Ci ∩ Cj = ∅

Each partition determines an equivalence relation in U, and vice versa.

We shall denote the set of all partitions of U into k classes (clusters) by
Pk(U).
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Simple criterion functions
Joining the individual units into a cluster C we make a certain ”error”, we create
certain ”tension”among them – we denote this quantity by p(C). The criterion
function P (C) combines these ”partial/local errors”into a ”global error”.

Usually it takes the form:

S. P (C) =
∑
C∈C

p(C)

or
M. P (C) = max

C∈C
p(C)

which can be unified and generalized in the following way:

Let (R,⊕, e,≤) be an ordered abelian monoid then:

⊕. P (C) =
⊕
C∈C

p(C)

For simple criterion functions usually min(Pk+1U), P ) ≤ min(Pk(U), P ) — we
fix the value of k and set Φ ⊆ Pk(U).
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Cluster-error function / dissimilarities
The cluster-error p(C) has usually the properties:

p(C) ≥ 0 and ∀X ∈ U : p({X}) = 0

In the continuation we shall assume that these properties of p(C) hold.

To express the cluster-error p(C) we define on the space of units a dissimilarity
d : U × U → R+

0 for which we require D1 and D2:

D1. ∀X ∈ U : d(X,X) = 0

D2. symmetric: ∀X,Y ∈ U : d(X,Y) = d(Y,X)

Usually the dissimilarity d is defined using another dissimilarity δ : [U ]× [U ]→ R+
0

as

d(X,Y) = δ([X], [Y])
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Properties of dissimilarities
The dissimilarity d is:

D3. even: ∀X,Y ∈ U : (d(X,Y) = 0⇒ ∀Z ∈ U : d(X,Z) = d(Y,Z))

D4. definite: ∀X,Y ∈ U : (d(X,Y) = 0⇒ X = Y)

D5. metric: ∀X,Y,Z ∈ U : d(X,Y) ≤ d(X,Z) + d(Z,Y) – triangle

D6. ultrametric: ∀X,Y,Z ∈ U : d(X,Y) ≤ max(d(X,Z), d(Z,Y))

D7. additive, iff the Buneman’s or four-point condition holds ∀X,Y,U,V ∈ U :

d(X,Y) + d(U,V) ≤ max(d(X,U) + d(Y,V), d(X,V) + d(Y,U))

The dissimilarity d is a distance iff D4, D5 hold.

Since the description [ ] : U→ [U] need not to be injective, d can be indefinite.
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Dissimilarities on Rm / examples 1

n measure definition range note

1 Euclidean

√√√√ m∑
i=1

(xi − yi)2 [0,∞) M(2)

2 Sq. Euclidean
m∑
i=1

(xi − yi)2 [0,∞) M(2)2

3 Manhattan
m∑
i=1

|xi − yi| [0,∞) M(1)

4 rook
m

max
i=1
|xi − yi| [0,∞) M(∞)

5 Minkowski p

√√√√ m∑
i=1

(xi − yi)p [0,∞) M(p)
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Dissimilarities on Rm / examples 2

n measure definition range note

6 Canberra
m∑
i=1

|xi − yi|
|xi + yi|

[0,∞)

7 Heincke

√√√√ m∑
i=1

(
|xi − yi|
|xi + yi|

)2 [0,∞)

8 Self-balanced
m∑
i=1

|xi − yi|
max(xi, yi)

[0,∞)

9 Lance-Williams
∑m
i=1 |xi − yi|∑m
i=1 xi + yi

[0,∞)

10 Correlation c.
cov(X,Y )√

var(X)var(Y )
[1,−1]
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(Dis)similarities on IBm / examples
Let IB = {0, 1}. For X,Y ∈ IBm we define a = XY , b = XY , c = XY ,
d = XY . It holds a + b + c + d = m. The counters a, b, c, d are used to define
several (dis)similarity measures on binary vectors.

In some cases the definition can yield an indefinite expression 0
0

. In such cases we
can restrict the use of the measure, or define the values also for indefinite cases. For
example, we extend the values of Jaccard coefficient such that s4(X,X) = 1. And
for Kulczynski coefficient, we preserve the relation T = 1

s4
− 1 by

s4 =

 1 d = m

a
a+b+c

otherwise
s−1

3 = T =


0 a = 0, d = m

∞ a = 0, d < m

b+c
a

otherwise

We transform a similarity s from [1, 0] into dissimilarity d on [0, 1] by d = 1− s.

For details see Batagelj, Bren (1995).
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(Dis)similarities on IBm / examples 1

n measure definition range

1 Russel and Rao (1940) a
m

[1, 0]

2 Kendall, Sokal-Michener (1958) a+d
m

[1, 0]

3 Kulczynski (1927), T−1 a
b+c

[∞, 0]

4 Jaccard (1908) a
a+b+c

[1, 0]

5 Kulczynski 1
2
( a
a+b

+ a
a+c

) [1, 0]

6 Sokal & Sneath (1963), un4
1
4
( a
a+b

+ a
a+c

+ d
d+b

+ d
d+c

) [1, 0]

7 Driver & Kroeber (1932) a√
(a+b)(a+c)

[1, 0]

8 Sokal & Sneath (1963), un5
ad√

(a+b)(a+c)(d+b)(d+c)
[1, 0]
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(Dis)similarities on IBm / examples 2

n measure definition range

9 Q0
bc
ad

[0,∞]

10 Yule (1927), Q ad−bc
ad+bc

[1,−1]

11 Pearson, φ ad−bc√
(a+b)(a+c)(d+b)(d+c)

[1,−1]

12 – bc – 4bc
m2 [0, 1]

13 Baroni-Urbani, Buser (1976), S∗∗ a+
√
ad

a+b+c+
√
ad

[1, 0]

14 Braun-Blanquet (1932) a
max(a+b,a+c)

[1, 0]

15 Simpson (1943) a
min(a+b,a+c)

[1, 0]

16 Michael (1920) 4(ad−bc)
(a+d)2+(b+c)2

[1,−1]
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Dissimilarities between sets
Let F be a finite family of subsets of the finite set U ; A,B ∈ F and let
A⊕B = (A \B) ∪ (B \A) denotes the symmetric difference between A and B.

The ’standard’ dissimilarity between sets is the Hamming distance:

dH(A,B) := card(A⊕B)

Usually we normalize it dh(A,B) = 1
M

card(A ⊕ B). One normalization is
M = card(U); the other M = m1 + m2, where m1 and m2 are the first and the
second largest value in {card(X) : X ∈ F}.

Other dissimilarities

ds(A,B) =
card(A⊕B)

card(A) + card(B)
du(A,B) =

card(A⊕B)

card(A ∪B)

dm(A,B) =
max(card(A \B), card(B \A))

max(card(A), card(B))

For all these dissimilarities d(A,B) = 0 if A = B = ∅.
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Problems with dissimilarities
What to do in the case of mixed units (with variables measured in different types of
scales)?

• conversion to a common scale

• compute the dissimilarities on homogeneous parts and combine them (Gower’s
dissimilarity)

Fairness of dissimilarity – all variables contribute equally. Approaches: use of
normalized variables, analysis of dependencies among variables.
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Cluster-error function / examples
Now we can define several cluster-error functions:

S. p(C) =
∑

X,Y∈C,X<Y

w(X) · w(Y) · d(X,Y)

S. p(C) =
1

w(C)

∑
X,Y∈C,X<Y

w(X) · w(Y) · d(X,Y)

where w : U → R+ is a weight of units, which is extended to clusters by:

w({X}) = w(X), X ∈ U

w(C1 ∪ C2) = w(C1) + w(C2), C1 ∩ C2 = ∅

Often w(X) = 1 holds for each X ∈ U . Then w(C) = card(C).

M. p(C) = max
X,Y∈C

d(X,Y) = diam(C) – diameter

T. p(C) = min
T is a spanning tree over C

∑
(X:Y)∈T

d(X,Y)
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We shall use the labels in front of the forms of (partial) criterion functions to denote
types of criterion functions. For example:

SM. P (C) =
∑
C∈C

max
X,Y∈C

d(X,Y)

It is easy to prove:

Proposition 1.1 Let P ∈ {SS, SS, SM,MS,MS,MM} then there exists an
αPk (U) > 0 such that for each C ∈ Pk(U) :

P (C) ≥ αPk (U) ·max
C∈C

max
X,Y∈C

d(X,Y)

holds.

Note that this inequality can be writen also as P (C) ≥ αPk (U) ·MM(C).
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Sensitive criterion functions
The criterion function P (C), based on the dissimilarity d, is sensitive iff for each
feasible clustering C it holds

P (C) = 0⇐⇒ ∀C ∈ C ∀X,Y ∈ C : d(X,Y) = 0

and is α-sensitive iff there exists an αPk (U) > 0 such that for each C ∈ Pk(U) :

P (C) ≥ αPk (U) ·MM(C)

Proposition 1.2 Every α-sensitive criterion function is also sensitive.

The proposition 1.1 can be reexpressed as:

Proposition 1.3 The criterion functions SS, SS, SM,MS,MS,MM are α-
sensitive.
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Representatives
Another form of cluster-error function, which is frequently used in practice, is based
on the notion of leader or representative of the cluster:

R. p(C) = min
L∈F

∑
X∈C

w(X) · d(X,L)

where F ⊆ F is the set of representatives. The element C ∈ F, which minimizes
the right side expression, is called the representative of cluster C. It is not always
uniquely determined.

Example 1 The representation space need not be the same as the description space.
[U] ⊆ R2 and [F] = {(a, b, c) : ax+ by = c, a2 + b2 = 1}. 2

Example 2 In the case [U] ⊆ Rm, [F] = Rm , d(X,L) = d2
2(X,L) =∑m

i=1(xi− li)2 there exists a uniquely determined representative – center of gravity
C = 1

card(C)

∑
X∈C X . In this case the criterion function SR is called Ward’s

criterion function (Ward, 1963). 2
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The generalized Ward’s criterion function
To obtain the generalized Ward’s clustering problem we, relying on the equality

p(C) =
∑
X∈C

d2
2(X,C) =

1

2 card(C)

∑
X,Y ∈C

d2
2(X,Y )

replace the expression for p(C) with

p(C) =
1

2w(C)

∑
X,Y ∈C

w(X) · w(Y ) · d(X,Y ) = S(C)

Note that d can be any dissimilarity on U .

From the definition we can easily derive the following equality: If Cu ∩ Cv = ∅
then

w(Cu∪Cv)·p(Cu∪Cv) = w(Cu)·p(Cu)+w(Cv)·p(Cv)+
∑

X∈Cu,Y ∈Cv

w(X)·w(Y )·d(X,Y )

In Batagelj (1988) it is also shown how to replace C by a generalized, possibly
imaginary (with descriptions not neccessary in the same set as U), central element
in the way to preserve the properties characteristic for Ward’s clustering problem.
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&

$

%

Representatives cluster error
Proposition 1.4 Let p(C) be of type R then

a) p(C) + w(X) · d(X, C ∪X) ≤ p(C ∪X),X /∈ C
b) p(C \X) + w(X) · d(X, C) ≤ p(C), X ∈ C

Proof: The definition of C can be equivalently expressed in the form:

∀L ∈ F : p(C) =
∑
Y∈C

w(Y) · d(Y, C) ≤
∑
Y∈C

w(Y) · d(Y,L)

Therefore in case a):

p(C) =
∑
Y∈C

w(Y) · d(Y, C) ≤
∑
Y∈C

w(Y) · d(Y, C ∪X) =

=
∑

Y∈C∪X

w(Y) · d(Y, C ∪X) − w(X) · d(X, C ∪X) =

= p(C ∪X)− w(X) · d(X, C ∪X)

In the similar way we can prove also inequality b). 2
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Other criterion functions
Several other types of criterion functions were proposed in the literature. A very
important class among them are the ”statisticalčriterion functions based on the
assumption that the units are sampled from a mixture of multivariate normal
distributions (Marriott, 1982) .

General criterion function
Not all clustering problems can be expressed by a simple criterion function. In some
applications a general criterion function of the form

P (C) =
⊕

(C1,C2)∈C×C

q(C1, C2), q(C1, C2) ≥ 0

is needed. We shall use it in blockmodeling.

Multicriteria clustering
In some problems several criterion functions can be defined (Φ, P1, P2, . . . , Ps).
See Ferligoj, Batagelj (1994).
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Example: problem of partitioning of a generation of pupils
into a given number of classes

so that the classes will consist of (almost) the same number of pupils and that they
will have a structure as similar as possible. An appropriate criterion function is

P (C) = max
{C1,C2}∈C×C

card(C1)≥card(C2)

min
f:C1→C2
f is surjective

max
X∈C1

d(X, f(X))

where d(X,Y) is a measure of dissimilarity between pupils X and Y.
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Example: Regionalization
The motivation comes from regionalization problem: partition given set of territorial
units into k connected subgroups of similar units – regions.

Suppose that besides the descriptions of units [U] they are related also by a binary
relation R ⊆ U×U.

In such a case we have an additional requirement – relational constraint on
clusterings to be feasible. The set of feasible clusterings can be defined as:

Φ(R) = {C ∈ P (U) : each cluster C ∈ C is a subgraph (C,R ∩ C × C) in the
graph (U, R) with the required type of connectedness}

If R is nonsymmetric we can define different types of sets of feasible clusterings for
the same relation (Ferligoj and Batagelj, 1983).
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Complexity of the clustering problem
Because the set of feasible clusterings Φ is finite the clustering problem (Φ, P )

can be solved by the brute force approach inspecting all feasible clusterings.
Unfortunately, the number of feasible clusterings grows very quickly with n. For
example

card(Pk) = S(n, k) =
1

k!

k−1∑
i=0

(−1)i
(
k

i

)
(k − i)n, 0 < k ≤ n

where S(n, k) is a Stirling number of the second kind. And to get an impression:

S(20, 8) = 15170932662679

S(30, 11) = 215047101560666876619690

S(n, 2) = 2n−1 − 1

For this reason the brute force algorithm is only of theoretical interest.

We shall assume that the reader is familiar with the basic notions of the theory of
complexity of algorithms (Garey and Johnson, 1979) .
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Complexity results
Although there are some polynomial types of clustering problems, for example
(P2,MM) and (Pk, ST), it seems that they are mainly NP-hard.

Brücker (1978) showed that ( ∝ denotes the polynomial reducibility of problems) :

Theorem 1.5 Let the criterion function

P (C) =
⊕
C∈C

p(C)

be α-sensitive, then for each problem (Pk(U), P ) there exists a problem
(Pk+1(U′), P ), such that (Pk(U), P ) ∝ (Pk+1(U′), P ).
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Proof: Select a value P ∗ such that P ∗ > maxC∈Pk(U) P (C), extend, U′ = U ∪ {X•},
the set of units with a new unit X•, and define the dissimilarities between it and the ’old’ units
such that d(X,X•) > P ∗/α′, for X ∈ U and α′ = αPk+1(U

′). We get a new clustering
problem (Pk+1(U

′), P ).

Consider a clustering C′ ∈ Pk+1(U
′). There are two possibilities:

a. X• forms its own cluster C′ = C ∪ {{X•}}, C ∈ Pk(U). Then

P (C′) = P (C)⊕ p({X•}) = P (C) ≤ max
C∈Pk(U)

P (C) < P ∗

b. X• belongs to a cluster C• with card(C•) ≥ 2. Then

P (C′) ≥ α′ · max
C∈C′

max
X,Y∈C

d(X,Y) ≥ α′ · max
X,Y∈C•

d(X,Y) =

= α′ · max
X∈C•\{X•}

d(X,X•) > P ∗

We see that all optimal solutions of the problem (Pk+1(U
′), P ) have the form a. Since in

this case P (C′) = P (C)

C′ ∈ Min(Pk+1(U
′), P )⇔ C ∈ Min(Pk(U), P )

2
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Complexity results 1
Theorem 1.6 Let the criterion function P be sensitive then

3− COLOR ∝ (P3, P )

Proof: Let G = (V,E) be a simple undirected graph. We assign to it a clustering
problem (P3(V ), P ) as follows. We define a dissimilarity d (on which P is based)
by

d(u, v) =

 1 (u : v) ∈ E

0 (u : v) /∈ E

Since P is sensitive it holds: the graph G is 3-
colorable iff min(P3(V ), P ) = 0.
Let C = {C1, C2, C3} then P (C) = 0 iff c :

V → {1, 2, 3} : (c(v) = i ⇔ v ∈ Ci) is a
vertex coloring.

2
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Complexity results 2

Polynomial NP-hard note

(P2,MM) (P3,MM) Theorem 1.6

(P3,SM) Theorem 1.6

(P2,SS) MAX-CUT ∝ (P2,SS)

(P2,SS) (P2, SS) ∝ (P2, SS)

(P2,MS) PARTITION ∝ (P2,MS)

(Rm2 , SS)

(R1
k, SS)

(R1
k, SM)

(R1
k,MM)

Note that, by the Theorem 1.5, (Pk,MM), k > 3 are also NP-hard . . .
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Consequences
From these results it follows (it is believed) that no efficient (polynomial) exact
algorithm exists for solving the clustering problem.

Therefore the procedures should be used which give ”good”results, but not
necessarily the best, in a reasonable time.

The most important types of these procedures are:

• local optimization

• hierarchical (agglomerative, divisive and adding)

• leaders and the dynamic clusters method

• graph theory methods
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Approaches to Clustering
• local optimization

• dynamic programming

• hierarchical methods; agglomerative methods; Lance-Williams formula;
dendrogram; inversions; adding methods

• leaders and the dynamic clusters method

• graph theory (next, 3. lecture);
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Local optimization
Often for a given optimization problem (Φ, P ) there exist rules which relate to each
element of the set Φ some elements of Φ. We call them local transformations.

The elements which can be obtained from a given element are called neighbors –
local transformations determine the neighborhood relation S ⊆ Φ×Φ in the set Φ.
The neighborhood of element X ∈ Φ is called the set S(X) = {Y : XSY} .
The element X ∈ Φ is a local minimum for the neighborhood structure (Φ, S) iff

∀Y ∈ S(X) : P (X) ≤ P (Y)

In the following we shall assume that S is reflexive, ∀X ∈ Φ : XSX.
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Local optimization
They are the basis of the local optimization procedure

select X0; X := X0;
while ∃Y ∈ S(X) : P (Y) < P (X) do X := Y;

which starting in an element of X0 ∈ Φ repeats moving to an element determined
by local transformation which has better value of the criterion function until no such
element exists.
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Clustering neigborhoods
Usually the neighborhood relation in local optimization clustering procedures over
Pk(U) is determined by the following two transformations:

• transition: clustering C′ is obtained from C by moving a unit from one cluster
to another

C′ = (C \ {Cu, Cv}) ∪ {Cu \ {Xs}, Cv ∪ {Xs}}

• transposition: clustering C′ is obtained from C by interchanging two units
from different clusters

C′ = (C \ {Cu, Cv}) ∪ {(Cu \ {Xp}) ∪ {Xq}, (Cv \ {Xq}) ∪ {Xp}}

The transpositions preserve the number of units in clusters.
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Hints
Two basic implementation approaches are usually used: stored data approach and
stored dissimilarity matrix approach.

If the constraints are not too stringent, the relocation method can be applied directly
on Φ; otherwise, we can transform using penalty function method the problem to an
equivalent nonconstrained problem (Pk, Q) with Q(C) = P (C) + αK(C) where
α > 0 is a large constant and K(C) = 0, for C ∈ Φ, and K(C) > 0 otherwise.

There exist several improvements of the basic relocation algorithm: simulated
annealing, tabu search, . . . (Aarts and Lenstra, 1997).

The initial clustering C0 can be given; most often we generate it randomly.
Let c[s] = u⇔ Xs ∈ Cu. Fill the vector c with the desired number of units in each
cluster and shuffle it:

for p := n downto 2 do begin q := random(1, p); swap(c[p], c[q]) end;
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Quick scanning of neighbors
Testing P (C′) < P (C) is equivalent to P (C)− P (C′) > 0.
For the S criterion function

∆P (C,C′) = P (C)− P (C′) = p(Cu) + p(Cv)− p(C′u)− p(C′v)

Additional simplifications can be done considering relations between Cu and C′u,
and between Cv and C′v .

Let us illustrate this on the generalized Ward’s method. For this purpose it is useful
to introduce the quantity

a(Cu, Cv) =
∑

X∈Cu,Y∈Cv

w(X) · w(Y) · d(X,Y)

Using the quantity a(Cu, Cv) we can express p(C) in the form p(C) = a(C,C)
2w(C)

and the equality mentioned in the introduction of the generalized Ward clustering
problem: if Cu ∩ Cv = ∅ then

w(Cu ∪ Cv) · p(Cu ∪ Cv) = w(Cu) · p(Cu) + w(Cv) · p(Cv) + a(Cu, Cv)
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∆ for the generalized Ward’s method
Let us analyze the transition of a unit Xs from cluster Cu to cluster Cv:
We have C′u = Cu \ {Xs} , C′v = Cv ∪ {Xs} ,

w(Cu)·p(Cu) = w(C′u)·p(C′u)+a(Xs, C
′
u) = (w(Cu)−w(Xs))·p(C′u)+a(Xs, C

′
u)

and
w(C′v) · p(C′v) = w(Cv) · p(Cv) + a(Xs, Cv)

From d(Xs,Xs) = 0 it follows a(Xs, Cu) = a(Xs, C
′
u). Therefore

p(C′u) =
w(Cu) · p(Cu)− a(Xs, Cu)

w(Cu)− w(Xs)
p(C′v) =

w(Cv) · p(Cv) + a(Xs, Cv)

w(Cv) + w(Xs)

and finally

∆P (C,C′) = p(Cu) + p(Cv)− p(C′u)− p(C′v) =

=
w(Xs) · p(Cv)− a(Xs, Cv)

w(Cv) + w(Xs)
− w(Xs) · p(Cu)− a(Xs, Cu)

w(Cu)− w(Xs)

In the case when d is the squared Euclidean distance it is possible to derive also

expression for corrections of centers (Späth, 1977).
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Dynamic programming
Suppose that Min(Φk, P ) 6= ∅, k = 1, 2, . . .. Denoting P ∗(U, k) =
P (C∗k(U)) we can derive the generalized Jensen equality (Batagelj,
Korenjak and Klavžar, 1994):

P ∗(U, k) =


p(U) {U} ∈ Φ1

min
∅⊂C⊂U

∃C∈Φk−1(U\C):C∪{C}∈Φk(U)

(P ∗(U \ C, k − 1)⊕ p(C)) k > 1

This is a dynamic programming (Bellman) equation which, for some special
constrained problems, that keep the size of Φk small, allows us to solve the
clustering problem by the adapted Fisher’s algorithm.
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Hierarchical methods
The set of feasible clusterings Φ determines the feasibility predicate Φ(C) ≡ C ∈
Φ defined onP(P(U)\{∅}); and conversely Φ ≡ {C ∈ P(P(U)\{∅}) : Φ(C)}.

In the set Φ the relation of clustering inclusion v can be introduced by

C1 v C2 ≡ ∀C1 ∈ C1, C2 ∈ C2 : C1 ∩ C2 ∈ {∅, C1}

we say also that the clustering C1 is a refinement of the clustering C2.

It is well known that (P (U),v) is a partially ordered set (even more, semimodular
lattice). Because any subset of partially ordered set is also partially ordered, we
have: Let Φ ⊆ P (U) then (Φ,v) is a partially ordered set.

The clustering inclusion determines two related relations (on Φ):

C1 < C2 ≡ C1 v C2 ∧C1 6= C2 – strict inclusion, and

C1 <· C2 ≡ C1 < C2 ∧ ¬∃C ∈ Φ : (C1 < C ∧C < C2) – predecessor.
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Conditions on the structure of the set of feasible clusterings
We shall assume that the set of feasible clusterings Φ ⊆ P (U) satisfies the
following conditions:

F1. O ≡ {{X} : X ∈ U} ∈ Φ

F2. The feasibility predicate Φ is local – it has the form Φ(C) =
∧
C∈C ϕ(C)

where ϕ(C) is a predicate defined on P(U) \ {∅} (clusters).

The intuitive meaning of ϕ(C) is: ϕ(C) ≡ the cluster C is ’good’. Therefore
the locality condition can be read: a ’good’ clustering C ∈ Φ consists of ’good’
clusters.

F3. The predicate Φ has the property of binary heredity with respect to the
fusibility predicate ψ(C1, C2), i.e.,

C1 ∩ C2 = ∅ ∧ ϕ(C1) ∧ ϕ(C2) ∧ ψ(C1, C2)⇒ ϕ(C1 ∪ C2)

This condition means: in a ’good’ clustering, a fusion of two ’fusible’ clusters
produces a ’good’ clustering.
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. . . conditions

F4. The predicate ψ is compatible with clustering inclusion v, i.e.,

∀C1,C2 ∈ Φ : (C1 < C2 ∧C1 \C2 = {C1, C2} ⇒ ψ(C1, C2) ∨ ψ(C2, C1))

F5. The interpolation property holds in Φ, i.e., ∀C1,C2 ∈ Φ :

(C1 < C2 ∧ card(C1) > card(C2) + 1⇒ ∃C ∈ Φ : (C1 < C ∧C < C2))

These conditions provide a framework in which the hierarchical methods can be
applied also for constrained clustering problems Φk(U) ⊂ Pk(U).

In the ordinary problem both predicates ϕ(C) and ψ(Cp, Cq) are always true – all
conditions F1-F5 are satisfied.
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Criterion functions compatible with a dissimilarity
between clusters

We shall call a dissimilarity between clusters a function D : (C1, C2)→ R+
0 which

is symmetric, i.e., D(C1, C2) = D(C2, C1).

Let (R+
0 ,⊕, 0,≤) be an ordered abelian monoid. Then the criterion function

P (C) =
⊕

C∈C p(C), ∀X ∈ U : p({X}) = 0 is compatible with dissimilarity D
over Φ iff for all C ⊆ U holds:

ϕ(C) ∧ card(C) > 1⇒ p(C) = min
(C1,C2)∈Ψ(C)

(p(C1)⊕ p(C2)⊕D(C1, C2))

Theorem 1.7 A S criterion function is compatible with dissimilarity D defined by

D(Cp, Cq) = p(Cp ∪ Cq)− p(Cp)− p(Cq)

In this case, let C′ = C \ {Cp, Cq} ∪ {Cp ∪ Cq}, Cp, Cq ∈ C, then

P (C′)− P (C) = D(Cp, Cq)
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&

$

%

Greedy approximation
Theorem 1.8 Let P be compatible with D over Φ, ⊕ distributes over min, and
F1 – F5 hold, then

P (C∗k) = min
C∈Φk

P (C) = min
C1,C2∈C∈Φk+1

ψ(C1,C2)

(P (C)⊕D(C1, C2))

The equality from theorem 2.1 can also be written in the form

P (C∗k) = min
C∈Φk+1

(P (C)⊕ min
C1,C2∈C
ψ(C1,C2)

D(C1, C2))

from where we can see the following ’greedy’ approximation:

P (C∗k) ≈ P (C∗k+1)⊕ min
C1,C2∈C∗

k+1
ψ(C1,C2)

D(C1, C2)

which is the basis for the following agglomerative (binary) procedure for solving
the clustering problem.
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Agglomerative methods
1. k := n; C(k) := {{X} : X ∈ U};
2. while ∃Ci, Cj ∈ C(k): (i 6= j ∧ ψ(Ci, Cj)) repeat
2.1. (Cp, Cq) := argmin{D(Ci, Cj): i 6= j ∧ ψ(Ci, Cj)};
2.2. C := Cp ∪ Cq; k := k − 1;
2.3. C(k) := C(k + 1) \ {Cp, Cq} ∪ {C};
2.4. determine D(C,Cs) for all Cs ∈ C(k)

3. m := k

Note that, because it is based on an approximation, this procedure is not an exact
procedure for solving the clustering problem.

For another, probabilistic view on agglomerative methods see Kamvar, Klein,
Manning (2002).

Divisive methods work in the reverse direction. The problem here is how to
efficiently find a good split (Cp, Cq) of cluster C.

Univerza v Ljubljani s s y s l s y ss * 6



V. Batagelj: Optimizacijske metode / 9. razvrščanje v skupine 45'
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Some dissimilarities between clusters
We shall use the generalized Ward’s c.e.f.

p(C) =
1

2w(C)

∑
X,Y ∈C

w(X) · w(Y ) · d(X,Y )

and the notion of the generalized center C of the cluster C, for which the dissimilarity to any
cluster or unit U is defined by

d(U,C) = d(C,U) =
1

w(C)
(
∑
X∈C

w(X) · d(X,U)− p(C))

Minimal: Dm(Cu, Cv) = min
X∈Cu,Y ∈Cv

d(X,Y )

Maximal: DM (Cu, Cv) = max
X∈Cu,Y ∈Cv

d(X,Y )

Average: Da(Cu, Cv) =
1

w(Cu)w(Cv)

∑
X∈Cu,Y ∈Cv

w(X) · w(Y ) · d(X,Y )
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. . . some dissimilarities
Gower-Bock: DG(Cu, Cv) = d(Cu, Cv) = Da(Cu, Cv)−

p(Cu)

w(Cu)
−
p(Cv)

w(Cv)

Ward: DW (Cu, Cv) =
w(Cu)w(Cv)

w(Cu ∪ Cv)
DG(Cu, Cv)

Inertia: DI(Cu, Cv) = p(Cu ∪ Cv)

Variance: DV (Cu, Cv) = var(Cu ∪ Cv) =
p(Cu ∪ Cv)
w(Cu ∪ Cv)

Weighted increase of variance:

Dv(Cu, Cv) = var(Cu∪Cv)−
w(Cu) · var(Cu) + w(Cv) · var(Cv)

w(Cu ∪ Cv)
=
DW (Cu, Cv)

w(Cu ∪ Cv)

For all of them Lance-Williams-Jambu formula holds:

D(Cp ∪ Cq , Cs) = α1D(Cp, Cs) + α2D(Cq , Cs) + βD(Cp, Cq) +

+γ|D(Cp, Cs)−D(Cq , Cs)|+ δ1v(Cp) + δ2v(Cq) + δ3v(Cs)
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Lance-Williams-Jambu coefficients
method α1 α2 β γ δt v(Ct)

minimum 1
2

1
2

0 − 1
2

0 −
maximum 1

2
1
2

0 1
2

0 −
average wp

wpq

wq
wpq

0 0 0 −

Gower-Bock wp
wpq

wq
wpq

−wpwq
w2
pq

0 0 −

Ward wps
wpqs

wqs
wpqs

− ws
wpqs

0 0 −

inertia wps
wpqs

wqs
wpqs

wpq
wpqs

0 − wt
wpqs

p(Ct)

variance
w2
ps

w2
pqs

w2
qs

w2
pqs

w2
pq

w2
pqs

0 − wt
w2
pqs

p(Ct)

w.i. variance
w2
ps

w2
pqs

w2
qs

w2
pqs

−wswpq
w2
pqs

0 0 −

wp = w(Cp), wpq = w(Cp ∪ Cq), wpqs = w(Cp ∪ Cq ∪ Cs)
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Hierarchies
The agglomerative clustering procedure produces a series of feasible clusterings C(n),
C(n− 1), . . . , C(m) with C(m) ∈ MaxΦ (maximal elements for v).

Their union T =
⋃n
k=m C(k) is called a hierarchy and has the property

∀Cp, Cq ∈ T : Cp ∩ Cq ∈ {∅, Cp, Cq}

The set inclusion ⊆ is a tree or hierarchical order on T . The hierarchy T is complete iff
U ∈ T .

For W ⊆ U we define the smallest cluster CT (W ) from T containing W as:
c1. W ⊆ CT (W )

c2. ∀C ∈ T : (W ⊆ C ⇒ CT (W ) ⊆ C)

CT is a closure on T with a special property

Z /∈ CT ({X,Y})⇒ CT ({X,Y}) ⊂ CT ({X,Y,Z}) = CT ({X,Z}) = CT ({Y,Z})
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Level functions
A mapping h : T → R+

0 is a level function on T iff
l1. ∀X ∈ U : h({X}) = 0

l2. Cp ⊆ Cq ⇒ h(Cp) ≤ h(Cq)
A simple example of level function is h(C) = card(C)− 1.

Every hierarchy / level function determines an ultrametric dissimilarity on U

δ(X,Y) = h(CT ({X,Y}))

The converse is also true (see Dieudonne (1960)): Let d be an ultrametric on U. Denote
B(X, r) = {Y ∈ U : d(X,Y) ≤ r}. Then for any given set A ⊂ R+ the set

C(A) = {B(X, r) : X ∈ U, r ∈ A} ∪ {{U}} ∪ {{X} : X ∈ U}

is a complete hierarchy, and h(C) = diam(C) is a level function.

The pair (T , h) is called a dendrogram or a clustering tree because it can be visualized as a
tree.
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Association coefficients, Monte Carlo, m = 15

CLUSE – maximum [0.00, 0.33]

Kulczynski
Driver-Kroeber
Jaccard
Baroni-Urbani
Simpson
Russel-Rao
Braun-Blanquet
un4

Pearson
Michael
Yule
un5

Sokal-Michener
– bc –
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Inversions
Unfortunately the function hD(C) = D(Cp, Cq), C = Cp ∪ Cq is not
always a level function – for some Ds the inversions, D(Cp, Cq) >

D(Cp ∪ Cq, Cs), are possible.

Batagelj (1981) showed:

Theorem 1.9 hD is a level function for the Lance-Williams procedure (α1,
α2, β, γ) iff:

(i) γ + min(α1, α2) ≥ 0

(ii) α1 + α2 ≥ 0

(iii) α1 + α2 + β ≥ 1

The dissimilarity D has the reducibility property (Bruynooghe, 1977) iff

D(Cp, Cq) ≤ t, D(Cp, Cs) ≥ t, D(Cq, Cs) ≥ t ⇒ D(Cp ∪ Cq, Cs) ≥ t

Theorem 1.10 If a dissimilarity D has the reducibility property then hD
is a level function.
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Adding hierarchical methods
Suppose that we already built a clustering tree T over the set of units U.
To add a new unit X to the tree T we start in the root and branch down.
Assume that we reached the node corresponding to cluster C, which was
obtained by joining subclusters Cp and Cq . There are three possibilities: or
to add X to Cp, or to add X to Cq , or to form a new cluster {X}.

Consider again the ’greedy approximation’ P (C•k) = P (C•k+1) +

D(Cp, Cq) where D(Cp, Cq) = minCu,Cv∈C•k+1
D(Cu, Cv) and C•i

are greedy solutions.

Since we wish to minimize the value of criterion P it follows from the
greedy relation that we have to select the case corresponding to the maximal
among values D(Cp∪{X}, Cq), D(Cq ∪{X}, Cp) and D(Cp∪Cq, {X}).

This is a basis for the adding clustering method. We start with a tree on the
first two units and then successively add to it the remaining units. The unit
X is included into all clusters through which we branch it down.
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... adding hierarchical methods
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&

$

%

About the minimal solutions of (Pk, SR)

Theorem 1.11 In the (locally with respect to transitions) minimal cluste-
ring for the problem (Pk,SR)

SR. P (C) =
∑
C∈C

∑
X∈C

w(X) · d(X, C)

each unit is assigned to the nearest representative: Let C• be (locally with
respect to transitions) minimal clustering then it holds:

∀Cu ∈ C•∀X ∈ Cu∀Cv ∈ C• \ {Cu} : d(X, Cu) ≤ d(X, Cv)
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Proof
Let C′ = (C• \ {Cu, Cv}) ∪ {Cu \ {X}, Cv ∪ {X}} be any clustering neighbouring with
respect to transitions to the clustering C• . From the theorem assumptions P (C•) ≤ P (C′)

and the type of criterion function we have:

p(Cu) + p(Cv) ≤ p(Cu \X) + p(Cv ∪X)

and by proposition 1.4.b: ≤ p(Cu)− w(X).d(X, Cu) + p(Cv ∪X).
Therefore p(Cv) ≤ p(Cv ∪X)− w(X).d(X, Cu), and

w(X).d(X, Cu) ≤ p(Cv ∪X)− p(Cv) =

= p(Cv ∪X)− (p(Cv) + w(X).d(X, Cv)) + w(X).d(X, Cv)

= w(X).d(X, Cv) + (p(Cv ∪X)−
∑

Y∈Cv∪X

w(Y).d(Y, Cv))

By the definition of cluster-error function of type R the second term in the last line is negative.
Therefore

≤ w(X).d(X, Cv)

Dividing by w(X) > 0 we finally get

d(X, Cu) ≤ d(X, Cv)
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Leaders method
In order to support our intuition in further development we shall briefly
describe a simple version of dynamic clusters method – the leaders or
k-means method, which is the basis of the ISODATA program (one among
the most popular clustering programs) and several recent ’data-mining’
methods. In the leaders method the criterion function has the form SR.

The basic scheme of leaders method is simple:

determine C0; C := C0;

repeat
determine for each C ∈ C its leader C;
the new clustering C is obtained by assigning each unit

to its nearest leader
until leaders stabilize

To obtain a ’good’ solution and an impression of its quality we can repeat
this procedure with different (random) C0.
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The dynamic clusters method
The dynamic clusters method is a generalization of the above scheme. Let
us denote:

Λ – set of representatives
L ⊆ Λ – representation
Ψ – set of feasible representations
W : Φ×Ψ→ R+

0 – extended criterion function
G : Φ×Ψ→ Ψ – representation function
F : Φ×Ψ→ Φ – clustering function

and
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Basic scheme of the dynamic clusters method

the following conditions have to be satisfied:

W0. P (C) = minL∈ΨW (C,L)

the functions G and F tend to improve (diminish) the value of the extended
criterion function W :

W1. W (C, G(C,L)) ≤W (C,L)

W2. W (F (C,L),L) ≤W (C,L)

then the dynamic clusters method can be described by the scheme:

C := C0; L := L0;

repeat
L := G(C,L);

C := F (C,L)

until the clustering stabilizes
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Properties of DCM

To this scheme corresponds the sequence vn = (Cn,Ln), n ∈ N determined
by relations

Ln+1 = G(Cn,Ln) and Cn+1 = F (Cn,Ln+1)

and the sequence of values of the extended criterion function un =

W (Cn,Ln). Let us also denote u∗ = P (C∗). Then it holds:

Theorem 1.12 For every n ∈ N, un+1 ≤ un, u∗ ≤ un,
and if for k > m, vk = vm then ∀n ≥ m : un = um.

The Theorem 2.6 states that the sequence un is monotonically decreasing
and bounded, therefore it is convergent. Note that the limit of un is
not necessarily u∗ – the dynamic clusters method is a local optimization
method.
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... types of of DCM sequences

Type A: ¬∃k,m ∈ N, k > m : vk = vm

Type B: ∃k,m ∈ N, k > m : vk = vm

Type B0: Type B with k = m+ 1

The DCM sequence (vn) is of type B if

• sets Φ and Ψ are both finite.
For example, when we select a representative of C among its members.

• ∃δ > 0 : ∀n ∈ N : (vn+1 6= vn ⇒ un − un+1 > δ)

Because the sets U and consequently Φ are finite we expect from a good dynamic
clusters procedure to stabilize in finite number of steps – is of type B.
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Additional requirement
The conditions W0, W1 and W2 are not strong enough to ensure this. We shall
try to compensate the possibility that the set of representations Ψ is infinite by the
additional requirement:

W3. W (C, G(C,L)) = W (C,L)⇒ L = G(C,L)

With this requirement the ’symmetry’ between Φ and Ψ is distroyed. We could
reestablish it by the requirement:

W4. W (F (C,L,L)) = W (C,L)⇒ C = F (C,L)

but it turns out that W4 often fails. For this reason we shall avoid it.

Theorem 1.13 If W3 holds and if there exists m ∈ N such that um+1 = um, then
also Lm+1 = Lm.
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Simple clustering and representation functions
Usually, in the applications of the DCM, the clustering function takes the form
F : Ψ→ Φ. In this case the condition W2 simplifies to: W (F (L),L) ≤ W (C,L)

which can be expressed also as F (L) ∈ MinC∈Φ W (C,L). For such, simple
clustering functions it holds:

Theorem 1.14 If the clustering function F is simple and if there exists m ∈ N
such that Lm+1 = Lm, then for every n ≥ m : vn = vm.

What can be said about the case when G is simple – has the form G : Φ→ Ψ?

Theorem 1.15 If W3 holds and the representation function G is simple then:

a. G(C) = arg minL∈Ψ W (C,L)

b. ∃k,m ∈ N, k > m∀i ∈ N : vk+i = vm+i

c. ∃m ∈ N∀n ≥ m : un = um

d. if also F is simple then ∃m ∈ N∀n ≥ m : vn = vm
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Original DCM
In the original dynamic clusters method (Diday, 1979) both functions F and G are
simple – F : Ψ→ Φ and G : Φ→ Ψ.

We proved, if also W3 holds and the functions F and G are simple, then:

G0. G(C) = argminL∈ΨW (C,L)

and
F0. F (L) ∈ MinC∈Φ W (C,L)

In other words, given an extended criterion function W , the relations G0 and F0
define an appropriate pair of functions G and F such that the DCM stabilizes in
finite number of steps.
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Clustering and Networks
• clustering with relational constraint

• transforming data into graphs (neighbors)

• clustering of networks; dissimilarities between graphs (networks)

• clustering of vertices / links; dissimilarities between vertices

• clustering in large networks
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Clustering with relational constraint
Suppose that the units are described by attribute data a: U → [U] and related by a
binary relation R ⊆ U×U that determine the relational data (U, R, a).

We want to cluster the units according to the similarity of their descriptions, but also
considering the relation R – it imposes constraints on the set of feasible clusterings,
usually in the following form:

Φ(R) = {C ∈ P (U) : each cluster C ∈ C is a subgraph (C,R ∩ C × C) in the
in the graph (U, R) of the required type of connectedness}
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Some types of relational constraints
We can define different types of sets of feasible clusterings for the same relation R.
Some examples of types of relational constraint Φi(R) are

type of clusterings type of connectedness

Φ1(R) weakly connected units

Φ2(R) weakly connected units that contain at most one center

Φ3(R) strongly connected units

Φ4(R) clique

Φ5(R) the existence of a trail containing all the units of the cluster

A set of units L ⊆ C is a center of cluster C in the clustering of type Φ2(R) iff the
subgraph induced by L is strongly connected and R(L) ∩ (C \ L) = ∅.
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Some graphs of different types
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Properties of relational constraints
The sets of feasible clusterings Φi(R) are linked as follows:

Φ4(R) ⊆ Φ3(R) ⊆ Φ2(R) ⊆ Φ1(R)

Φ4(R) ⊆ Φ5(R) ⊆ Φ2(R)

If the relation R is symmetric, then Φ3(R) = Φ1(R)

If the relation R is an equivalence relation, then Φ4(R) = Φ1(R)

Here are also examples of the corresponding fusibility predicates:

ψ1(C1, C2) ≡ ∃X ∈ C1∃Y ∈ C2 : (XRY ∨YRX)

ψ2(C1, C2) ≡ (∃X ∈ L1∃Y ∈ C2 : XRY) ∨ (∃X ∈ C1∃Y ∈ L2 : YRX)

ψ3(C1, C2) ≡ (∃X ∈ C1∃Y ∈ C2 : XRY) ∧ (∃X ∈ C1∃Y ∈ C2 : YRX)

ψ4(C1, C2) ≡ ∀X ∈ C1∀Y ∈ C2 : (XRY ∧YRX)

For ψ3 the property F5 fails.

We can use both hierarchical and local optimization methods for solving some types
of problems with relational constraint (Ferligoj, Batagelj 1983).
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Neighborhood Graphs
For a given dissimilarity d on the set of units U we can define several graphs:

The k nearest neighbors graph GN (k) = (U, A)

(X,Y) ∈ A⇔ Y is among the k closest neighbors of X

By setting for a(X,Y) ∈ A its value to w(a) = d(X,Y) we obtain a network.
In the case of equidistant pairs of units we have to decide – or to include them all in
the graph, or specify an additional selection rule.

A special case of the k nearest neighbors graph is the nearest neighbor graph
GN (1). We shall denote by G∗NN the graph with included all equidistant pairs, and
by GNN a graph where a single nearest neighbor is always selected.

The fixed-radius neighbors graph GB(r) = (U, E)

(X : Y) ∈ E ⇔ d(X,Y) ≤ r

There are several papers on efficient algorithms for determining the neighborhood
graphs (Fukunaga, Narendra (1975), Dickerson, Eppstein (1996), Chávez & (1999),
Murtagh (1999)). These graphs are a bridge between data and network analysis.
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Structure and properties of the nearest neighbor graphs
Let N = (U, A, w) be a nearest neighbor network. A pair of units X,Y ∈ U are
reciprocal nearest neighbors or RNNs iff (X,Y) ∈ A and (Y,X) ∈ A.

Suppose card(U) > 1. Then in N

• every unit/vertex X ∈ U has the outdeg(X) ≥ 1 — there is no isolated unit;

• along every walk the values of w are not increasing.

using these two observations we can show that in N∗NN :

• all the values of w on a closed walk are the same and all its arcs are reciprocal
— all arcs between units in a nontrivial (at least 2 units) strong component are
reciprocal;

• every maximal (can not be extended) elementary (no arc is repeated) walk ends
in a RNNs pair;

• there exists at least one RNNs pair – corresponding to minX,Y∈U,X 6=Y d(X,Y).
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Quick agglomerative clustering algorithms
Any graph GNN is a subgraph of G∗NN . Its connected components are directed
(acyclic) trees with a single RNNs pair in the root.

Based on the nearest neighbor graph very efficient O(n2) algorithms for agglome-
rative clustering for methods with the reducibility property can be built.

chain := [ ]; W := U;
while card(W) > 1 do begin

if chain = [ ] then select an arbitrary unit X ∈W else X := last(chain);
grow a NN-chain from X until a pair (Y,Z) of RNNs are obtained;
agglomerate Y and Z:

T := Y ∪ Z; W := W \ {Y,Z} ∪ {T}; compute D(T,W ),W ∈W

end;

It can be shown that if the clustering method has the reducibility property (minimum,
maximum, Ward, . . . ; but not Bock) then the NN-chain remains a NN-chain also
after the agglomeration of the RNNs pair.
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Clustering of Graphs and Networks
When the set of units U consists of graphs (for example chemical molecules)
we speak about clustering of graphs (networks). For this purpose we can use
standard clustering approaches provided that we have an appropriate definition of
dissimilarity between graphs.

The first approach is to define a vector description [G] = [g1, g2, . . . , gm] of each
graph G, and then use some standard dissimilarity δ on Rm to compare these
vectors d(G1,G2) = δ([G1], [G2]). We can get [G], for example, by:

Invariants: compute the values of selected invariants (indices) on each graph
(Trinajstić, 1983).

Fragments count: select a collection of subgraphs (fragments), for example triads,
and count the number of appearences of each – fragments spectrum.
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Invariants and structural properties
Let Gph be the set of all graphs. An invariant of a graph is a mapping i: Gph→ R
which is constant over isomorphic graphs

G ≈ H⇒ i(G) = i(H)

The number of vertices, the number of arcs, the number of edges, maximum degree
∆, chromatic number χ, . . . are all graph invariants.

Invariants have an important role in examining the isomorphism of two graphs.

Invariants on families of graphs are called structural properties: Let F ⊆ Gph be
a family of graphs. A property i:F → R is structural on F iff

∀G,H ∈ F : (G ≈ H⇒ i(G) = i(H))

A collection I of invariants/structural properties is complete iff

(∀i ∈ I : i(G) = i(H))⇒ G ≈ H

In most cases there is no efficiently computable complete collection.
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Transformations
Different dissimilarities between strings are based on transformations: insert, delete,
transpose (Levenshtein 1966, Kashyap 1983). For binary trees Robinson considered
a dissimilarity based on the transformation of neighbors exchange over an edge.

There is a natural generalization of this approach to graphs and other structured
objects (Batagelj 1988): Let T = {Tk} be a set of basic transformations of units
Tk : U → U and v : T × U → R+ value of transformation, which satisfy the
conditions:

∀T ∈ T : (T : X 7→ Y ⇒ ∃S ∈ T : (S : Y 7→ X ∧ v(T,X) = v(S,Y)))

and v(id, X) = 0.
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Transformations based dissimilarity
Suppose that for each pair X,Y ∈ U there exists a finite sequence τ =

(T1, T2, . . . , Tt) such that: τ(X) = Tt ◦ Tt−1 ◦ . . . ◦ T1(X) = Y. Then we
can define:

d(X,Y) = min
τ

(v(τ(X)) : τ(X) = Y)

where

v(τ(X)) =

 0 τ = id

v(η(T (X))) + v(T,X) τ = η ◦ T

It is easy to verify that so defined dissimilarity d(X,Y) is a distance.
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Examples of transformations

Using the transformations G1 and G2 we can transform any pair of connected
simple graphs one to the other. For triangulations of the plane on n vertices S is
such a transformation.
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Clustering in Graphs and Networks
Since in a graph G = (V,L) we have two kinds of objects – vertices and links we
can speak about clustering of vertices and clustering of links. Usually we deal with
clustering of vertices.

Again we can use the standard clustering methods provided that we have an
appropriate definition of dissimilarity between vertices.

The usual approach is to define a vector description [v] = [t1, t2, . . . , tm] of each
vertex v ∈ V , and then use some standard dissimilarity δ on Rm to compare these
vectors d(u, v) = δ([u], [v]). For some ’nonstandard’ such descriptions see Moody
(2001) and Harel, Koren (2001).

We can assign to each vertex v also different neighborhoods

N(v) = {u ∈ V : (v, u) ∈ L}

and other sets. In these cases the dissimilarities between sets are used on them.
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Properties of vertices
For a given graph G = (V,L) a property t : V → R is structural iff for every
automorphism ϕ of G it holds

∀v ∈ V : t(v) = t(ϕ(v))

Examples of such properties are

t(v) = degree (number of neighbors) of vertex v
t(v) = number of vertices at distance d from vertex v
t(v) = number of triads of type x at vertex v
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Properties of pairs of vertices
For a given graph G = (V,L) a property of pairs of vertices q : V × V → R is
structural if for every automorphism ϕ of G it holds

∀u, v ∈ V : q(u, v) = q(ϕ(u), ϕ(v))

Some examples of structural properties of pairs of vertices

q(u, v) = if (u, v) ∈ L then 1 else 0
q(u, v) = number of common neighbors of units u and v
q(u, v) = length of the shortest path from u to v

Using a selected property of pairs of vertices q we can describe each vertex u with a
vector

[u] = [q(u, v1), q(u, v2), . . . , q(u, vn), q(v1, u), . . . , q(vn, u)]

and again define the dissimilarity between vertices u, v ∈ V as d(u, v) = δ([u], [v]).
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Matrix dissimilarities
The following is a list of dissimilarities, used in literature, based on properties of
pairs of vertices for measuring the similarity between vertices vi and vj (p ≥ 0):

Manhattan: dm(vi, vj) =
∑n
s=1(|qis − qjs|+ |qsi − qsj |)

Euclidean: dE(vi, vj) =
√∑n

s=1((qis − qjs)2 + (qsi − qsj)2)

Truncated Man.: ds(vi, vj) =
∑n

s=1
s 6=i,j

(|qis − qjs|+ |qsi − qsj |)

Truncated Euc.: dS(vi, vj) =
√∑n

s=1
s 6=i,j

((qis − qjs)2 + (qsi − qsj)2)

Corrected Man.: dc(p)(vi, vj) = ds(vi, vj) + p · (|qii − qjj |+ |qij − qji|)

Corrected Euc.: de(p)(vi, vj) =
√
dS(vi, vj)2 + p · ((qii − qjj)2 + (qij − qji)2)

Corrected diss.: dC(p)(vi, vj) =
√
dc(p)(vi, vj)

The corrected dissimilarities with p = 1 should be used.
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Graph theory approaches
The basic decomposition of graphs is to (weakly) connected components – partition
of vertices (and links); and to (weakly) biconnected components – partition of links.
For both very efficient algorithms exist.

From a network N = (V,L,w) we can get for a treshold t a layer network
N(t) = (V,Lt, w) where Lt = {p ∈ L : w(p) ≥ t}. From it we can get a
clustering C(t) with connected components as clusters. For different tresholds these
clusterings form a hierarchy.

In seventies and eighties Matula studied different types of connectivities in graphs
and structures they induce. In most cases the algorithms are too demanding to be
used on larger graphs. A recent overview of connectivity algorithms was made by
Esfahanian.

For directed graphs the fundamental decomposition results can be found in Harary,
Norman, and Cartwright (1965).
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Decomposition of directed graphs
Given a simple directed graph G = (V,R), R ⊆ V × V we introduce two new
relations, R? (transitive and reflexive closure) and R (transitive closure), based on
R:

uR?v := ∃k ∈ N : uRkv and uRv := ∃k ∈ N+ : uRkv

or equivalently

R? =
⋃
k∈N

Rk and R =
⋃
k∈N+

Rk

Theorem 1.16
a) uRkv iff in the graph G = (V,R) there exists a walk of length k from u to v.
b) uR?v iff in the graph G = (V,R) there exists a walk from u to v.
c) uRv iff in the graph G = (V,R) there exists a non-null walk from u to v.
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Acyclic Relations
A relation R ∈ V × V is acyclic if and only if

∀v ∈ V ∀k > 0 : ¬v(R \ I)kv

i.e. if its graph, except for loops, contains no cycles. This condition can be written
also in the form (R \ I) ∩ I = ∅. We shall denote by Acy(V ) the set of all acyclic
relations on V .

A relation R ∈ V × V is strictly acyclic if and only if

∀v ∈ V ∀k > 0 : ¬vRkv

i.e. if its graph contains no cycles and, also, loops are not allowed. This condition
can be written also in form R ∩ I = ∅. Each strictly acyclic relation is also acyclic.

Theorem 1.17 For an acyclic relation R ∈ Acy(V ) over a finite, nonempty
set V there is at least one minimal, R−1(v) ⊆ {v}, and at least one maximal,
R(v) ⊆ {v}, element.
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&

$

%

Factorization
Suppose that on the set V we have a relationR ∈ V ×V and an equivalence∼. The
equivalence ∼ partitions the set V into equivalence classes which form the family
V/∼. In V/∼we can define the factor relation r = R/∼

r = R/∼ := {∃x ∈ X∃y ∈ Y : xRy}

We will see, later, that all blockmodels can be described in these terms. The factor
relation is the image of a blockmodel.

For a relation R ∈ V × V the strong connectivity relation RS = R? ∩ (R−1)? is
an equivalence. It partitions the set V into equivalence classes (strong components)
which form a family V/RS .

Theorem 1.18 Let R ∈ V × V . The relation v:= R/RS is acyclic on V/RS .
If R is a preorder (transitive and reflexive) then v is a partial order on V/RS .
If R is a tournament (asymmetric and comparable) then v is a linear order on
V/RS .
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Graph, strong components and factorization
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Cores
The notion of a core was introduced by Seidman in 1983.

In a given graph G = (V,L) a subgraph Hk = (W,L|W ) induced by the set W is
a k-core or a core of order k iff ∀v ∈ W : degH(v) ≥ k, and Hk is the maximum
subgraph with this property. The core of maximum order is also called the main
core. The core number of vertex v is the highest order of a core that contains this
vertex.

The degree deg(v) can be: in-degree, out-degree, in-degree + out-degree, . . . dete-
rmining different types of cores.

In figure an example of cores decomposition of a
given graph is presented. We can see the following
properties of cores:

• The cores are nested: i < j =⇒ Hj ⊆ Hi

• Cores are not necessarily connected su-
bgraphs.
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Determining and using cores
A very efficient O(m) algorithm (Batagelj, Zaveršnik 2002) for determining the
cores hierarchy can be built based on the following property:

If from a given graph G = (V,L) we recursively delete all vertices, and
lines incident with them, of degree less than k, the remaining graph is the
k-core.

The notion of cores can be generalized to networks.

Using cores we can identify the densiest parts of a graph. For revealing the
internal structure of the main core we can use standard clustering procedures on
dissimilarities between vertices. Afterwards we can remove the links of the main
core and analyse the residium graph.

Cores can be used also to localize the search for some computationally more
demanding substructures.
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&

$

%

Short cycles
A subgraph H = (V ′, A′) of G = (V,A) is cyclic k-gonal if each its vertex and
each its edge belong to at least one cycle of length at most k and at least 2 in H.

A sequence (C1, C2, . . . , Cs) of cycles of length at most k (and at least 2) of G

cyclic k-gonally connects vertex u ∈ V to vertex v ∈ V iff u ∈ C1 and v ∈ Cs
or u ∈ Cs and v ∈ C1 and V (Ci−1) ∩ V (Ci) 6= ∅, i = 2, . . . s; such sequence is
called a cyclic k-gonal chain.

A pair of vertices u, v ∈ V is cyclic k-gonally connected iff u = v, or there exists a
cyclic k-gonal chain that connects u to v.

Theorem 1.19 Cyclic k-gonal connectivity is an equivalence relation on the set of
vertices V .

An arc is cyclic iff it belongs to some cycle (of any length) in the graph G.

Theorem 1.20 If in the graph G for each cyclic arc the length of a shortest cycle
that contains it is at most k then the cyclic k-gonal reduction of G is an acyclic
graph.
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Final remarks
The agglomerative methods can be adapted for large sparse networks in sense of
relational constraint clustering – we have to compute dissimilarities only between
units/vertices connected by a link.

The Sollin’s MST algorithm can be very efficiently implemented for large sparse
networks.
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