2. Laboratorijska vaja

KRMILJENJE GLADINE

Definicija naloge:
Za sistem narisan na sliki določi odgovor prehoda za:
-vstopni signal
-motilni signal
Za oba primera nariši grafa na milimeterski papir!
Reševanje :

Potenciometer
Princip superpozicije :
a) $\quad Q_{i}=0 ; \quad h_{\text {ref }} \neq 0$

$$
\begin{aligned}
& \frac{H_{1}}{H_{\text {ref }}}=\frac{1\left(1+\frac{1}{100 \cdot S}\right) \cdot\left(\frac{1 / S \cdot 0,33}{1+\frac{1}{S} \cdot 0,33}\right) \cdot 0,035 \cdot 2,5 \cdot \frac{1}{S}}{1+\left(1+\frac{1}{100 \cdot S}\right) \cdot\left(\frac{1 / S \cdot 0,33}{1+1 / S \cdot 0,33}\right) \cdot 0,035 \cdot 2,5 \cdot \frac{1}{S}} \\
& H_{1}=\frac{1 \cdot\left(1+\frac{1}{100 \cdot S}\right) \cdot\left(\frac{0,33 / S}{1+0,33 / S}\right) \cdot 0,035 \cdot 2,5 \cdot \frac{1}{S}}{1+\left(1+\frac{1}{100 \cdot S}\right) \cdot\left(\frac{0,33 / S}{1+0,33 / S}\right) \cdot 0,035 \cdot 2,5 \cdot \frac{1}{S}} \\
& H_{1}=\frac{1 \cdot\left(\frac{100 \cdot S+1}{100 \cdot S}\right) \cdot\left(\frac{0,33}{S+0,33}\right) \cdot 0,035 \cdot 2,5 \cdot \frac{1}{S}}{S+\left(\frac{100 \cdot S+1}{100 \cdot S}\right) \cdot\left(\frac{0,33}{S+0,33}\right) \cdot 0,035 \cdot 2,5} \\
& H_{1}=\frac{(100 \cdot S+1) \cdot(0,33) \cdot 0,035 \cdot 2,5}{S^{2} \cdot(100 \cdot S) \cdot(S+0,33)+(100 \cdot S+1) \cdot(0,33) \cdot 0,035 \cdot 2,5 \cdot S}
\end{aligned}
$$

$$
\begin{aligned}
& H_{1}=\frac{2,88 \cdot S+0,0288}{100 \cdot S^{4}+33 \cdot S^{3}+2,88 \cdot S^{2}+0,0288 \cdot S} \\
& H_{1}=\frac{2,88 \cdot S+0,0288}{S \cdot\left(100 \cdot S^{3}+33 \cdot S^{2}+2,88 \cdot S+0,0288\right)} \\
& H_{1}=\frac{2,88 \cdot S+0,0288}{S \cdot\left(S+1,44 \cdot 10^{-1}\right) \cdot\left(S+1,74 \cdot 10^{-1}\right) \cdot\left(S+1,18 \cdot 10^{-2}\right) \cdot 100} \\
& H_{1}=\frac{A}{S-0}+\frac{B}{(S+0,144)}+\frac{C}{(S+0,174)}+\frac{D}{(S+0,0118)} \\
& A=\lim _{S \rightarrow 0}\left[(S-0) \frac{(2,88 \cdot S+0,0288) \cdot 10^{-2}}{S \cdot(S+0,144) \cdot(S+0,174) \cdot(S+0,0118)}\right]=97,41 \cdot 10^{-2} \\
& B=\lim _{S \rightarrow-0,144}\left[(S+0,144) \frac{(2,88 \cdot S+0,0288) \cdot 10^{-2}}{S \cdot(S+0,144) \cdot(S+0,174) \cdot(S+0,0118)}\right]=-675,74 \cdot 10^{-2} \\
& C=\lim _{S \rightarrow-0,174}\left[(S+0,174) \frac{(2,88 \cdot S+0,0288) \cdot 10^{-2}}{S \cdot(S+0,144) \cdot(S+0,174) \cdot(S+0,0118)}\right]=557,85 \cdot 10^{-2} \\
& D=\lim _{S \rightarrow-0,0118}\left[(S+0,0118) \frac{(2,88 \cdot S+0,0288) \cdot 10^{-2}}{S \cdot(S+0,144) \cdot(S+0,174) \cdot(S+0,0118)}\right]=20,49 \cdot 10^{-2} \\
& H_{1}(S)=\left(\frac{97,41}{S}+\frac{-675,74}{(S+0,144)}+\frac{557,85}{(S+0,174)}+\frac{20,49}{(S+0,0118)}\right) \cdot 10^{-2} \\
& h_{1}(t)=\left(97,41-675,74 \cdot e^{-0,144 \cdot t}+557,85 \cdot e^{-0,174 \cdot t}+20,49 \cdot e^{-0,0118 \cdot t}\right) \cdot 10^{-2} \\
& h_{1}(t)=0,9741-6,7574 \cdot e^{-0,144 \cdot t}+5,5785 \cdot e^{-0,174 \cdot t}+0,2049 \cdot e^{-0,0118 \cdot t}
\end{aligned}
$$

b) $h_{\text {ref }}=0 ; \quad Q_{i} \neq 0$

$$
\begin{aligned}
& \frac{H_{2}}{Q_{i}}=\frac{2,5 \cdot \frac{1}{S}}{1+\left(1+\frac{1}{100 \cdot S}\right) \cdot\left(\frac{1 / S \cdot 0,33}{1+\frac{1}{S} \cdot 0,33}\right) \cdot 0,035 \cdot 2,5 \cdot \frac{1}{S}} \\
& H_{2}=\frac{2,5 \cdot \frac{1}{S}}{1+\left(1+\frac{1}{100 \cdot S}\right) \cdot\left(\frac{0,33 / S}{1+\frac{0,33 / S}{S}}\right) \cdot 0,035 \cdot 2,5 \cdot \frac{1}{S}} \\
& H_{2}=\frac{2,5 \cdot \frac{1}{S}}{S+\left(\frac{100 \cdot S+1}{100 \cdot S}\right) \cdot\left(\frac{0,33}{S+0,33}\right) \cdot 0,035 \cdot 2,5} \\
& H_{2}=\frac{2,5 \cdot(100 \cdot S) \cdot(S+0,33)}{S^{2} \cdot(100 \cdot S) \cdot(S+0,33)+(100 \cdot S+1) \cdot(0,33) \cdot 0,035 \cdot 2,5 \cdot S} \\
& H_{2}=\frac{S \cdot(250 \cdot S+82,5)}{100 \cdot S^{4}+33 \cdot S^{3}+2,88 \cdot S^{2}+0,0288 \cdot S}
\end{aligned}
$$

$$
\begin{aligned}
& H_{2}=\frac{S \cdot(250 \cdot S+82,5)}{S \cdot\left(100 \cdot S^{3}+33 \cdot S^{2}+2,88 \cdot S+0,0288\right)} \\
& H_{2}=\frac{250 \cdot S+82,5}{\left(S+1,44 \cdot 10^{-1}\right) \cdot\left(S+1,74 \cdot 10^{-1}\right) \cdot\left(S+1,18 \cdot 10^{-2}\right) \cdot 100} \\
& H_{2}=\frac{A}{(S+0,144)}+\frac{B}{(S+0,174)}+\frac{C}{(S+0,0118)} \\
& A=\lim _{S \rightarrow-0,144}\left[(S+0,144) \frac{(250 \cdot S+82,5) \cdot 10^{-2}}{(S+0,144) \cdot(S+0,174) \cdot(S+0,0118)}\right]=-11724,66 \cdot 10^{-2} \\
& B=\lim _{S \rightarrow-0,174}\left[(S+0,174) \frac{(250 \cdot S+82,5) \cdot 10^{-2}}{(S+0,144) \cdot(S+0,174) \cdot(S+0,0118)}\right]=8014,79 \cdot 10^{-2} \\
& C=\lim _{S \rightarrow-0,0118}\left[(S+0,0118) \frac{(250 \cdot S+82,5) \cdot 10^{-2}}{(S+0,144) \cdot(S+0,174) \cdot(S+0,0118)}\right]=3709,86 \cdot 10^{-2} \\
& H_{2}(S)=\left(\frac{-11724,66}{(S+0,144)}+\frac{8014,79}{(S+0,174)}+\frac{3709,86}{(S+0,0118)}\right) \cdot 10^{-2} \\
& h_{2}(t)=\left(-11724,66 \cdot e^{-0,1444 t}+8014,79 \cdot e^{-0,174 \cdot t}+3709,86 \cdot e^{-0,0118 \cdot t}\right) \cdot 10^{-2} \\
& h_{2}(t)=-117,2466 \cdot e^{-0,144 \cdot t}+80,1479 \cdot e^{-0,174 \cdot t}+37,0986 \cdot e^{-0,0118 \cdot t}
\end{aligned}
$$

Podatki za risanje grafov:

a) Odgovor prehoda za vstopni	
t signal	

b)Odgovor za motilni signal	
t	h 2
$-12,2$	33,12704
$-8,46$	$-6,15076$
$-4,77$	$-9,98056$
$-1,08$	$-2,68329$
0	$-1 \mathrm{E}-04$
2,62	6,375339
6,31	13,91175
10	19,258
13,7	22,64538
17,4	24,52387
21,1	25,34347
24,8	25,46021
43,2	22,09344
72,8	15,71077
98,6	11,58942
117	9,327608
136	7,454212
139	7,194949
195	3,715745
206	3,263431
213	3,004705
250	1,94173
500	0,10163
1000	0,000278

Odgovor prehoda za vstopni signal

Odgovor prehoda na motilni signal

