

Copyright © 2002 Cycorp

• Why use logic?

• CycL Syntax
• Collections and Individuals (#$isa and #$genls)

• Microtheories

Foundations of Knowledge Foundations of Knowledge
Representation in CycRepresentation in Cyc

Copyright © 2002 Cycorp

NL vs. Logic: Expressiveness

NL:
Jim’s injury resulted from his falling.

Jim’s falling caused his injury.

Jim’s injury was a consequence of his falling.

Jim’s falling occurred before his injury.

Logic: identify the common concepts, e.g.

the relation: x caused y

Write rules about the common concepts, e.g.

x caused y → x temporally precedes y

NL: Write the
rule for every
expression?

Copyright © 2002 Cycorp

NL vs. Logic:
Ambiguity and Precision

x is running-InMotion → x is changing location

x is running-DeviceOperating→ x is operating

x is running-AsCandidate → x is a candidate

•x is at the bank.

•river bank?

•financial institution?

NL:
Ambiguous

Logic:
Precise

•x is running.

•changing location?

•operating?

•a candidate for office?

Reasoning: Figuring out what must be true, given what is
known. Requires precision of meaning.

Copyright © 2002 Cycorp

NL vs. Logic:Calculus of Meaning

Logic: Well-understood operators enable reasoning:

Logical constants: not, and, or, all, some

Not (All men are taller than all women).

All men are taller than 12”.

Some women are taller than 12”.

Not (All A are F than all B).

All A are F than x.

Some B are F than x.

Copyright © 2002 Cycorp

Logic-Based Language vs. Other
Formal Languages

• Logic
– Mode-independent
– KR and Indexing are

independent
– Implicit knowledge is

preserved in the KB

• Frames & Slots, OO
– Reasoning depends on mode

(in-args, out-args)

– Less reuse; either less
coverage or more bulk and
more work

– KR must be designed around
indexing

– Implicit knowledge is code-
dependent

Copyright © 2002 Cycorp

carl

 animal_type: elephant

 mother: claire

elephant

order: mammal

claire

 animal_type: elephant

 mother: elaine

(isa Carl Elephant)

(mother Carl Claire)

(genls Elephant Mammal)

Indexing and KR

Copyright © 2002 Cycorp

elephant

order: mammal

*size: large

*color: gray

*height:

*weight:

(genls Elephant Mammal)

(implies

 (and

(isa ?X Elephant)

(gender ?X Male)

(height ?X (Meter ?Y)))

 (weight ?X (Ton (TimesFn ?Y 2))))

Implicit knowledge

Copyright © 2002 Cycorp

• Why use logic?
– Expressiveness

– Precision
– Meaning
– Use-neutral representation

• Indexing and KR

• Implicit knowledge

SummarySummary

Copyright © 2002 Cycorp

• Why use logic?

• CycL Syntax
• Collections and Individuals (#$isa and #$genls)

• Microtheories

Foundations of Knowledge Foundations of Knowledge
Representation in CycRepresentation in Cyc

Copyright © 2002 Cycorp

Syntax: Constants

• A sampling of some constants:
– #$Dog, #$SnowSkiing,

#$PhysicalAttribute

– #$BillClinton,#$Rover,
#$DisneyLand-
TouristAttraction

– #$likesAsFriend, #$bordersOn,
#$objectHasColor, #$and,
#$not, #$implies, #$forAll

– #$RedColor, #$Soil-Sandy

CycLConstants denote specific individuals or collections
 (relations, people, computer programs, types of cars . . .)

Each CycLConstant is a character string prefixed by #$

These denote collections

These denote individuals :

•Partially Tangible
Individuals

•Relations

•Attribute Values

Copyright © 2002 Cycorp

Syntax: Formulas

CycLFormula: a relation applied to some arguments,
enclosed in parentheses

• Examples:
– (#$isa #$GeorgeWBush #$Person)
– (#$likesAsFriend #$GeorgeWBush #$AlGore)
– (#$BirthFn #$JacquelineKennedyOnassis)

A CycL Sentence is a well-formed CycLFormula with a Truth
Function, such as a predicate in the arg0 position. Sentences
have truth values.

A CycL Non-atomic Term is a well-formed CycLFormula with a
Function-Denotational in the arg0 position.

Copyright © 2002 Cycorp

Syntax: Sentences
A TruthFunction:

– is a relation that can be used to form sentences.
– begins with a lower-case letter.

• Types of TruthFunctions:
• Predicates: #$likesAsFriend, #$bordersOn,

#$objectHasColor, #$isa

• Logical Connectives: #$and, #$or, #$not

• Quantifiers: #$implies#$forAll, #$thereExists

• Sample CycLSentences:
– (#$isa #$GeorgeWBush #$Person)
– (#$likesAsFriend #$GeorgeWBush #$AlGore)

CycLSentences are used to form assertions and queries.

Copyright © 2002 Cycorp

Syntax: Non-atomic Terms
• A Function-Denotational

– is a relation that can be applied to some arguments to
pick out something new

– usually ends in “Fn”

• Examples of Function-Denotational:
– #$BirthFn, #$GovernmentFn,

#$BorderBetweenFn

• Sample CycL Non-atomic Terms:
– (#$GovernmentFn #$France)
– (#$BorderBetweenFn #$France #$Switzerland)
– (#$BirthFn #$JacquelineKennedyOnassis)

CycL Non-atomic Terms are denotational terms. They can be
used like any other, as in:

• (#$residenceOfOrganization (#$GovernmentFn
#$France) #$CityOfParisFrance)

Copyright © 2002 Cycorp

Well-formedness: Arity
• Arity constraints are represented in CycL with the

predicate #$arity:

• (#$arity #$performedBy 2)
Represents the fact that #$performedBy takes two arguments, e.g.:

(#$performedBy
#$AssassinationOfPresidentLincoln
#$JohnWilkesBooth)

• (#$arity #$BirthFn 1)
Represents the fact that #$BirthFn takes one arguments, e.g.:

(#$BirthFn #$JacquelineKennedyOnassis)

Copyright © 2002 Cycorp

Well-Formedness: Argument Type
Argument type constraints are represented in CycL with

the following 2 predicates:

1 #$argIsa
(#$argIsa #$performedBy 1 #$Action) means that the first

argument of #$performedBy must be an individual #$Action, such as
the assassination of Lincoln in:

(#$performedBy #$AssassinationOfPresidentLincoln
#$JohnWilkesBooth)

2 #$argGenl
(#$argGenl #$penaltyForInfraction 2 #$Event) means

that the second argument of #$penaltyForInfraction must be a type of
#$Event, such as the collection of illegal equipment use events in:

(#$penaltyForInfraction #$SportsEvent
#$IllegalEquipmentUse #$Disqualification)

Copyright © 2002 Cycorp

Complex Formulas

• CycL also includes logical terms to allow us
to stick formulas together and quantify into
them

Logical Terms

Logical
Connectives

Quantifiers

Copyright © 2002 Cycorp

Logical Connectives
• Logical connectives

– truth functions
– take sentences as their arguments

• (#$and
(#$performedBy #$GettysburgAddress #$Lincoln)
(#$objectHasColor #$Rover #$TanColor))

• (#$or
(#$objectHasColor #$Rover #$TanColor)
(#$objectHasColor #$Rover #$BlackColor))

• (#$implies
(#mainColorOfObject #$Rover #$TanColor)
(#$not (#$mainColorOfObject #$Rover

#$RedColor)))
• (#$not

(#$performedBy #$GettysburgAddress
#$BillClinton))

Copyright © 2002 Cycorp

Variables and Quantifiers (1)

• By adding variables and quantifiers to the logical
connectives, predicates and other CycL components we’ve
already covered, we gain the ability to represent many
pieces of ordinary knowledge.

• Sentences involving concepts like “everybody,”
“something,” and “nothing” require variables and
quantifiers:

Everybody loves somebody.

Nobody likes spinach.

Some people like spinach and some people like broccoli,
but no one likes them both.

Copyright © 2002 Cycorp

Quantifiers
• Adding variables and quantifiers, we can represent

more general knowledge.
• Two main quantifiers:

1. Universal Quantifer -- #$forAll
Used to represent very general facts, like:

All dogs are mammals
Everyone loves dogs

2. Existential Quantifier -- #$thereExists
Used to assert that something exists, to state facts like:
 Someone is bored

 Some people like dogs

Copyright © 2002 Cycorp

Quantifiers

• Universal Quantifier
(#$forAll ?THING

(#$isa ?THING #$Thing))

• Existential Quantifier:
(#$thereExists ?JOE

(#$isa ?JOE #$Poodle))

• Others:
(#$thereExistsExactly 12 ?ZOS

(#$isa ?ZOS #$ZodiacSign))

(#$thereExistsAtLeast 9 ?
PLNT (#$isa ?PLNT
#$Planet))

Everything is a thing.

Something is a poodle.

There are exactly
12 zodiac signs

There are at least
9 planets

Copyright © 2002 Cycorp

Implicit Universal Quantification
All variables occurring “free” in a formula are

understood by Cyc to be implicitly universally
quantified.

So, to CYC, the following two formulas represent the
same fact:

(#$forAll ?X
(#$implies
(#$isa ?X #$Dog)
(#$isa ?X #$Animal))

(#$implies
(#$isa ?X #$Dog)
(#$isa ?X #$Animal))

Copyright © 2002 Cycorp

Pop Quiz #1

• What does this formula mean?

(#$thereExists ?PLANET
 (#$and
 (#$isa ?PLANET #$Planet)
 (#$orbits ?PLANET #$Sun)))

Copyright © 2002 Cycorp

Pop Quiz #1

• What does this formula mean?

(#$thereExists ?PLANET
 (#$and
 (#$isa ?PLANET #$Planet)
 (#$orbits ?PLANET #$Sun)))

“There is at least one planet orbiting the Sun.”

Copyright © 2002 Cycorp

Pop Quiz #2

• What does this formula mean?

(#$forAll ?PERSON1
(#$implies

 (#$isa ?PERSON1 #$Person)
 (#$thereExists ?PERSON2
 (#$and

 (#$isa ?PERSON2 #$Person)
 (#$loves ?PERSON1 ?PERSON2)))

Copyright © 2002 Cycorp

Pop Quiz #2

• What does this formula mean?

(#$forAll ?PERSON1
(#$implies

 (#$isa ?PERSON1 #$Person)
 (#$thereExists ?PERSON2
 (#$and

 (#$isa ?PERSON2 #$Person)
 (#$loves ?PERSON1 ?PERSON2)))

“Everybody loves somebody.”

Copyright © 2002 Cycorp

Pop Quiz #3

• How about this one?

(#$implies
 (#$isa ?PERSON1 #$Person)
 (thereExists ?PERSON2
 (#$and
 (#$isa ?PERSON2 #$Person)
 (#$loves ?PERSON2 ?PERSON1))))

Copyright © 2002 Cycorp

Pop Quiz #3

• How about this one?

(#$implies
 (#$isa ?PERSON1 #$Person)
 (thereExists ?PERSON2
 (#$and
 (#$isa ?PERSON2 #$Person)
 (#$loves ?PERSON2 ?PERSON1))))

“Everyone is loved by someone.”

Copyright © 2002 Cycorp

Pop Quiz #4

And this?

(#$implies
(#$isa ?PRSN #$Person)
(#$loves ?PRSN ?PRSN))

Copyright © 2002 Cycorp

Pop Quiz #4

And this?

(#$implies
(#$isa ?PRSN #$Person)
(#$loves ?PRSN ?PRSN))

“Everyone loves his (or her) self.”

Copyright © 2002 Cycorp

Denotational Functions
• Denotational Functions can be applied to some

arguments to pick out something new. The result
of applying a denotational function is a term that
denotes something. Function names are
always capitalized, and often end in “Fn”.

• Examples:

#$FruitFn
#$GovernmentFn
#$DeadFn

Copyright © 2002 Cycorp

Non-atomic Terms
• A non-atomic term (NAT) is a denoting term like a

constant.
• NATs are formed by applying a denotational function to a

denoting term.
(#$FruitFn #$AppleTree)
(#$GovernmentFn #$France)
(#$DeadFn #$Cockroach)

• NATs can be used just like atomic terms (i.e., constants).
(#$implies

(#$isa ?APPLE (#$FruitFn #$AppleTree))
(#$colorOfObject ?APPLE #$RedColor))

• The denotation of a NAT is determined by the
denotations of the inputs to the denoting function.

Copyright © 2002 Cycorp

Why Use NATs?
• Uniformity

– All kinds of fruits, nuts, etc., are represented in
the same, compositional way:

 (#$FruitFn PLANT) *

• Inferential Efficiency
– Forward rules can automatically conclude many

useful assertions about NATs as soon as they
are created, based on the function and
arguments used to create the NAT.

• what kind of thing that NAT represents
• how to refer to the NAT in English
• …

Copyright © 2002 Cycorp

Reifiable Functions and NARTS
• Some functions return concepts that we want to “reify” and keep in the

KB. These are reifiable functions, such as:

#$GovernmentFn
#$BirthFn

• When a new NAT is created using a reifiable function, that new term is
itself reified (kept around separately in the KB) and becomes a Non-
Atomic Reified Term, or NART, such as

(#$GovernmentFn #$France)
(#$BirthFn #$JacquelineKennedyOnassis)

• Other functions return concepts that we don’t want to store separately in
the KB. These are unrefiable functions, such as:

#$TimesFn
• When a new NAT is created using an unrefiable functions, it does not get

created as a persistent term in the KB. Unrefiable functions result in
Non-Atomic Unreified Terms, such as (#$TimesFn 3 7).

Copyright © 2002 Cycorp

• CycL components
– Constants
– Formulas
– Sentences (and Truth Functions)
– Non-atomic Terms (and Denotational Functions)

– Logical Constants
– Variables and Quantifiers

• Well-Formedness
– arity
– argument constraints

SummarySummary

Copyright © 2002 Cycorp

• Why use logic?

• CycL Syntax
• Collections and Individuals (#$isa and #$genls)

• Microtheories

Foundations of Knowledge Foundations of Knowledge
Representation in CycRepresentation in Cyc

Copyright © 2002 Cycorp

Collections and Individuals

• A collection is a kind or class.

• Collections have instances.

• Each collection is characterized
by some feature(s) that all of its
instances share.

• Some collections
– #$Tower

– #$SpaceStation

– #$Director-Movie

– #$Person

#$Perso
n

Instances of #$Person

#$AbrahamLinc
oln

#$MarioAndretti
#$Cher

#$BillClinton

Copyright © 2002 Cycorp

Individuals

• An individual is a single thing, not a collection.

• Individuals do not have instances.

• Individuals may have parts.

• Some individuals:
– #$EiffelTower

– #$Mir

– #$OrsonWelles

– #$UnitedStatesMarineCorps

*#$Cher

Copyright © 2002 Cycorp

Joe The Marine

• #$UnitedStatesMarineCorp
s
• An individual organization

• A single, specific thing

• It has parts, but not instances
• #$UnitedStatesMarine

• The collection of all human members of
the #$UnitedStatesMarineCorps

•Has instances, each of which is an

individual marine

#$UnitedStatesMarineCorps

*
#$UnitedStatesMarin
e

*
**

* *#$Joe

Copyright © 2002 Cycorp

Remember...

• “Collections can have instances but not
parts.”

• “Individuals can have parts but not
instances.”

Copyright © 2002 Cycorp

Everything Is An Instance of Something

• Every collection is, at minimum, an instance of
#$Collection.

#$Individual

.

.
. .

#$OrsonWelle
s

#$EiffelTower

#$UnitedStatesMarineCorps

#$Mir

• Every individual is, at minimum, an instance of
 #$Individual.

#$Collection

..

.

..
#$Tower

#$Collection

#$MilitaryPerson

#$SpaceStatio
n

#$Individual

Copyright © 2002 Cycorp

Collections of Collections
and Collections of Individuals

• Some collections whose instances are individuals:
– #$Tower

– #$Person
– #$Dog

• Some collections whose instances are collections:

– #$ArtifactType
– #$Collection

• Some collections with instances of both types:

– #$ProprietaryConstant
– #$DocumentationConstant

Copyright © 2002 Cycorp

Disjoint Collections

• Collections which have no instances in common are disjoint.

 (#$disjointWith #$Dog #$Cat)

#$Dog
#$Cat

.

 . .

 . .

 .

 . .

 . .

Copyright © 2002 Cycorp

#$isa

• (#$isa X Y) means
“X is an instance of collection Y.”

– (#$isa #$EiffelTower #$Tower)

– (#$isa #$Canada #$Country)

– (#$isa #$Cher #$Person)

– (#$isa #$UnitedStatesMarineCorps

#$ModernMilitaryOrganization)

Y

.
X

Copyright © 2002 Cycorp

#$genls
• (#$genls X Y) means

“Every instance of collection X is also an
instance of collection Y.”

– (#$genls #$Dog #$Mammal)
– (#$genls #$Tower #$FixedStructure)
– (#$genls #$ModernMilitaryOrganization

#$Organization)

Y

X

..

..
.

• Sometimes expressed in Cyclish© as:
“Y is a genls (generalization) of X.”
“X is a spec (specialization) of Y.”

Copyright © 2002 Cycorp

#$genls is transitive

#$Animal

#$Mamm
al

#$Dog#$Elephant #$Compute
r

#$ComputerNetwo
rk

#$PhysicalDevice

#$ComputationalSyst
em

Copyright © 2002 Cycorp

The #$genls hierarchy
#$Individual

#$FixedStructur
e

#$Tower

#$Animal

#$Mamm
al

#$Dog#$Elephant#$BellTower #$Lighthouse

Copyright © 2002 Cycorp

#$isa is NOT transitive

#$Collection

#$Cher

#$Person

5

#$PositiveInteger

#$InfiniteSetOrCollection

Copyright © 2002 Cycorp

Remember . . .

• Because every instance of a collection is
also an instance of the collection’s genls,
the following statements are true:

– “#$isa transfers through #$genls.”

– “#$isa does NOT transfer through
#$isa.”

Copyright © 2002 Cycorp

What can we conclude about
#$Rover the dog?

#$Thing

#$BiologicalSpecies

#$BiologicalClass

#$BiologicalKingdom

#$Dog

#$Mamm
al

#$Animal

#$Rover

#$Individual#$BiologicalTaxon

#$Collection

#$isa

#$genl
s

Copyright © 2002 Cycorp

• #$Agent-Generic #$Agent #$AirBreathingVertebrate
#$Animal #$AnimalBLO #$BilateralObject
#$BiologicalLivingObject #$CanineAnimal #$Carnivore
#$CompositeTangibleAndIntangibleObject #$Dog
#$Eutheria #$Individual #$IndividualAgent
#$LeftAndRightSidedObject #$Mammal
#$NaturalTangibleStuff #$NonPersonAnimal
#$OrganicStuff #$Organism-Whole #$PartiallyIntangible
 #$PartiallyIntangibleIndividual #$PartiallyTangible
#$PerceptualAgent #$SentientAnimal
#$SomethingExisting #$SpatialThing #$SpatialThing-
Localized #$TemporalThing #$Thing #$Vertebrate

A more complete list of collections of
which #$Rover is an instance

Copyright © 2002 Cycorp

Is #$genls reflexive?

Consider

(#$genls #$Dog #$Dog)

This means
“Every instance of #$Dog

is an instance of #$Dog.”
Yes!

Copyright © 2002 Cycorp

Is #$isa reflexive?

Consider

(#$isa #$Dog #$Dog)

NOT reflexive
However, consider

(#$isa #$Collection
#$Collection)

Not anti-reflexive, either

Copyright © 2002 Cycorp

• Collections vs. Individuals

• #$isa vs. #$genls

• #$genls is transitive

• #$genls is reflexive

SummarySummary

Copyright © 2002 Cycorp

• Why use logic?

• CycL Syntax
• Collections and Individuals (#$isa and #$genls)

• Microtheories

Foundations of Knowledge Foundations of Knowledge
Representation in CycRepresentation in Cyc

Copyright © 2002 Cycorp

A Bundle of Assertions

• Think of a microtheory (mt) as a set of assertions.

• Each microtheory bundles assertions based on
– a shared set of assumptions on which the truth of the assertions depends, or
– a shared topic (world geography, brain tumors, pro football), or
– a shared source: (CIA World Fact Book 1997, FM101-5, USA Today)

the Cyc KB,
as a sea of
assertions

Copyright © 2002 Cycorp

Avoiding Inconsistencies

• The assertions within a microtheory must be mutually consistent
– no monotonic contradictions allowed within a single microtheory

• Assertions in different microtheories may be inconsistent

the Cyc KB,
as a sea of
assertions

in MT1: tables, etc., are solid
in MT2: tables are mostly space

in MT1: Mandela is an elder statesman
in MT2: Mandela is President of South Africa
in MT3: Mandela is a political prisoner

Copyright © 2002 Cycorp

Every Assertion is in a Microtheory

• Every assertion falls within at least one microtheory

• Currently, every microtheory is a reified (named) term,
such as #$HumanActivitiesMt or #$OrganizationMt

• Mts are one way of indexing all the assertions in Cyc

Copyright © 2002 Cycorp

 Better/faster/more scalable knowledge base building
 Better/faster/more scalable inferencing, too.

• To focus development of the Cyc knowledge base
• To enable shorter and simpler assertions

 Mandela is president
vs. Mandela is president throughout 1995 in South Africa

 Tables are solid
vs. At granularity usually considered by humans, tables are solid

•To cope with global inconsistency in the KB, inevitable at this scale
• Each mt is locally consistent (content in unrelated mts is not visible)
• Good for handling divergence (different points of view, scientific
theories, changes over time)

Why Have Microtheories?

Copyright © 2002 Cycorp

 Better/faster/more scalable knowledge base building
 Better/faster/more scalable inferencing, too.

• To focus development of the Cyc knowledge base
• To enable shorter and simpler assertions

 Mandela is president
vs. Mandela is president throughout 1995 in South Africa

 Tables are solid
vs. At granularity usually considered by humans, tables are solid

•To cope with global inconsistency in the KB, inevitable at this scale
• Each mt is locally consistent (content in unrelated mts is not
visible)
• Good for handling divergence (different points of view,
scientific theories, changes over time)

Why Have microtheories? (cont.)

Copyright © 2002 Cycorp

•#$VocabularyMicrotheory -- each instance contains definitions of
general concepts used in a knowledge domain
•(e.g., #$TransportationVocabMt, #$ComputerSoftwareVocabMt)

• #$TheoryMicrotheory -- each instance contains general assertions in a
knowledge domain (e.g., #$TransportationMt ,#$ComputerSoftwareMt).

• #$DataMicrotheory -- each instance contains assertions about specific
individuals (e.g., #$TransportationDataMt, #$ComputerSoftwareDataMt)

Some types of microtheories
#$Microtheory

#$TheoryMicrotheory

#$DataMicrotheory

#$CounterfactualContext

#$PropositionalInformationThing

genls

ge
nl

s

genls

genls

#$VocabularyMicrotheory ge
nl

s

Copyright © 2002 Cycorp

Some types of microtheories
#$Microtheory

#$TheoryMicrotheory

#$DataMicrotheory

#$CounterfactualContext

#$PropositionalInformationThing

genls

ge
nl

s

genls

genls

#$VocabularyMicrotheory ge
nl

s

•#$PropositionalInformationThing --each instance of this
collection contains assertions representing the propositional
content of some #$InformationBearingThing (such as a picture,
text, or database table).

•#$CounterfactualContext -- each instance of this collection
contains at least one assertion which is not generally taken to be
true in the real world (e.g., #$TheSimpsonsMt, #$SQ77bMt)

Copyright © 2002 Cycorp

Explicitly relates a microtheory to a formula that is true in that
microtheory.

• (#$ist MT FORMLA) means that the Cyc formula FORMLA is
true in the microtheory MT.

Microtheory predicates: #$ist

(#$ist #$CyclistsMt (#$isa #$Lenat #$Person))

(#$ist #$NaiveStateChangeMt
 (#$implies
 (#$and
 (#$isa ?FREEZE #$Freezing)
 (#$outputsCreated ?FREEZE ?OBJ))
 (#$stateOfMatter ?OBJ #$SolidStateOfMatter)))

Copyright © 2002 Cycorp

Relates two microtheories such that one of them inherits
the assertions in the other; i.e., the first microtheory has
access to the assertions in the second microtheory.

• (#$genlMt MT-1 MT-2) means that every assertion
which is true in MT-2 is also true in MT-1.

• #$genlMt is transitive.

Microtheory predicates: #$genlMt

•(#$genlMt #$TransportationMt #$NaivePhysicsMt)

•(#$genlMt #$ModernMilitaryTacticsMt
 #$ModernMilitaryVehiclesMt)

•(#$genlMt #$EconomyMt #$TransportationMt)

Copyright © 2002 Cycorp

#$genlMt

Microtheory predicates, cont’d.

#$BaseKB

#$NaiveSpatialMt

#$NaivePhysicsMt#$NaturalGeographyMt

genlMt
gen

lM
t

ge
nl

M
t

#$MovementMt

gen
lM

t

genlM
t

#$TransportationMt

ge
nl

M
t

Copyright © 2002 Cycorp

Finding the right microtheory
•Microtheory placement is important in both making assertions and
asking queries.

•An assertion is visible in all and only the mts that inherit from the mt
in which it is placed.
•A query is answered using all and only assertions in mts visible from
the mt in which it is asked.
•Well-formedness requires visibility of definitional information
(#$isa, #$genls, #$arity, #$arg1Isa . . .) for all the terms used.

• Good placement of assertions makes them visible in the microtheories in
which they are needed. That is, good placement is not too specific.

• Good placement of assertions makes them invisible in microtheories in
which they are not needed; otherwise, search space for inference in the
lower microtheories is needlessly increased. That is, good placement is
not too general.

Copyright © 2002 Cycorp

Finding the right microtheory

•3607 instances of #$Microtheory as of 02/05/01
•254 instances of #$GeneralMicrotheory

• For now, no substitute for familiarity

• To determine the function of some microtheory:
• read the #$comment
• examine the assertions
• examine the place in the mt hierarchy in which it fits
• if still unclear, consult the #$myCreator (or someone who
has made many assertions in that microtheory)

Copyright © 2002 Cycorp

Forthcoming Changes/Improvements
For more efficient ontology building and inference, we want:

•Dynamic generation of microtheories
•Software “power tools” that suggest best microtheory placement for
an assertion or a query
•More targeted, smaller contexts, i.e., re-place each assertion

•These, in turn, require:
•More explicit representation of context features
e.g., topic, level of granularity, time period in which it holds,…
•More explicit representation of the relationships that hold between
contexts (besides just #$genlMt)

These improvements are part of :
* RKF tools
* Context overhaul

Copyright © 2002 Cycorp

• What is a microtheory?

• Why have microtheories?

• Some types of microtheories

• Microtheory predicates

• Finding the right microtheory

SummarySummary

	Foundations of Knowledge Representation in Cyc
	NL vs. Logic: Expressiveness
	NL vs. Logic: Ambiguity and Precision
	NL vs. Logic:Calculus of Meaning
	Logic-Based Language vs. Other Formal Languages
	Slide 6
	Slide 7
	Summary
	Slide 9
	Syntax: Constants
	Syntax: Formulas
	Syntax: Sentences
	Syntax: Non-atomic Terms
	Well-formedness: Arity
	Well-Formedness: Argument Type
	Complex Formulas
	Logical Connectives
	Variables and Quantifiers (1)
	Quantifiers
	Slide 20
	Implicit Universal Quantification
	Pop Quiz #1
	Slide 23
	Pop Quiz #2
	Slide 25
	Pop Quiz #3
	Slide 27
	Pop Quiz #4
	Slide 29
	Denotational Functions
	Non-atomic Terms
	Why Use NATs?
	Reifiable Functions and NARTS
	Slide 34
	Slide 35
	Collections and Individuals
	Individuals
	Joe The Marine
	Remember...
	Everything Is An Instance of Something
	Collections of Collections and Collections of Individuals
	Disjoint Collections
	#$isa
	#$genls
	#$genls is transitive
	The #$genls hierarchy
	#$isa is NOT transitive
	Remember . . .
	What can we conclude about #$Rover the dog?
	A more complete list of collections of which #$Rover is an instance
	Is #$genls reflexive?
	Is #$isa reflexive?
	Slide 53
	Slide 54
	A Bundle of Assertions
	Avoiding Inconsistencies
	Every Assertion is in a Microtheory
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

